Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China.
National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, Beijing, 100190, P. R. China.
Small. 2020 Oct;16(39):e2003834. doi: 10.1002/smll.202003834. Epub 2020 Sep 2.
Cell adhesion of nanosystems is significant for efficient cellular uptake and drug delivery in cancer therapy. Herein, a near-infrared (NIR) light-driven biomimetic nanomotor is reported to achieve the improved cell adhesion and cellular uptake for synergistic photothermal and chemotherapy of breast cancer. The nanomotor is composed of carbon@silica (C@SiO ) with semi-yolk@spiky-shell structure, loaded with the anticancer drug doxorubicin (DOX) and camouflaged with MCF-7 breast cancer cell membrane (i.e., mC@SiO @DOX). Such biomimetic mC@SiO @DOX nanomotors display efficient self-thermophoretic propulsion due to a thermal gradient generated by asymmetrically spatial distribution. Moreover, the MCF-7 cancer cell membrane coating can remarkably reduce the bioadhesion of nanomotors in biological medium and exhibit highly specific self-recognition of the source cell line. The combination of effective propulsion and homologous targeting dramatically improves cell adhesion and the resultant cellular uptake efficiency in vitro from 26.2% to 67.5%. Therefore, the biomimetic mC@SiO @DOX displays excellent synergistic photothermal and chemotherapy with over 91% MCF-7 cell growth inhibition rate. Such smart design of the fuel-free, NIR light-powered biomimetic nanomotor may pave the way for the application of self-propelled nanomotors in biomedicine.
纳米系统的细胞黏附对于癌症治疗中高效的细胞摄取和药物传递非常重要。在此,报道了一种近红外(NIR)光驱动的仿生纳米马达,用于实现协同光热和化疗的乳腺癌的改进细胞黏附和细胞摄取。该纳米马达由具有半卵黄-刺状壳结构的碳@二氧化硅(C@SiO )组成,负载有抗癌药物阿霉素(DOX),并伪装成 MCF-7 乳腺癌细胞膜(即 mC@SiO @DOX)。由于不对称空间分布产生的热梯度,这种仿生 mC@SiO @DOX 纳米马达表现出高效的自热泳推进。此外,MCF-7 癌细胞膜涂层可以显著降低纳米马达在生物介质中的生物黏附,并表现出对源细胞系的高度特异性自我识别。有效的推进和同源靶向的结合极大地提高了细胞黏附和体外的细胞摄取效率,从 26.2%提高到 67.5%。因此,仿生 mC@SiO @DOX 表现出优异的协同光热和化疗作用,MCF-7 细胞的生长抑制率超过 91%。这种无燃料、NIR 光驱动仿生纳米马达的智能设计可能为自推进纳米马达在生物医学中的应用铺平道路。