Max Planck Institute for Intelligent Systems Institution, Heisenbergstraße 3, 70569 Stuttgart, Germany.
Center for Plant Molecular Biology, University of Tübingen , Auf der Morgenstelle 32, 72076 Tübingen, Germany.
Nano Lett. 2015 Oct 14;15(10):7043-50. doi: 10.1021/acs.nanolett.5b03100. Epub 2015 Oct 5.
The development of synthetic nanomotors for technological applications in particular for life science and nanomedicine is a key focus of current basic research. However, it has been challenging to make active nanosystems based on biocompatible materials consuming nontoxic fuels for providing self-propulsion. Here, we fabricate self-propelled Janus nanomotors based on hollow mesoporous silica nanoparticles (HMSNPs), which are powered by biocatalytic reactions of three different enzymes: catalase, urease, and glucose oxidase (GOx). The active motion is characterized by a mean-square displacement (MSD) analysis of optical video recordings and confirmed by dynamic light scattering (DLS) measurements. We found that the apparent diffusion coefficient was enhanced by up to 83%. In addition, using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.
用于技术应用,特别是生命科学和纳米医学的合成纳米马达的发展是当前基础研究的一个关键焦点。然而,基于生物相容性材料并使用无毒燃料来制造用于提供自推进的主动纳米系统一直具有挑战性。在这里,我们基于中空介孔硅纳米粒子(HMSNPs)制造了自推进的 Janus 纳米马达,该马达由三种不同的酶(过氧化氢酶、脲酶和葡萄糖氧化酶(GOx))的生物催化反应提供动力。通过光学视频记录的均方根位移(MSD)分析和动态光散射(DLS)测量对主动运动进行了表征。我们发现,表观扩散系数提高了 83%。此外,我们使用光镊直接测量了 64 ± 16 fN 的保持力,这是抵消单个纳米马达产生的有效自推进力所必需的。使用生物相容性良好的燃料成功地展示了生物相容的酶驱动的主动纳米马达,这为未来的生物医学应用提供了巨大的潜力。