Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany.
PLoS One. 2017 Dec 4;12(12):e0188003. doi: 10.1371/journal.pone.0188003. eCollection 2017.
Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of basic elements, called canonical microcircuits. In this theoretical study we propose a novel canonical microcircuit model and find that it supports two basic computational operations: a gating mechanism and working memory. By means of bifurcation analysis we systematically investigate the dynamical behavior of the canonical microcircuit with respect to parameters that govern the local network balance, that is, the relationship between excitation and inhibition, and key intrinsic feedback architectures of canonical microcircuits. We relate the local behavior of the canonical microcircuit to cognitive processing and demonstrate how a network of interacting canonical microcircuits enables the establishment of spatiotemporal sequences in the context of syntax parsing during sentence comprehension. This study provides a framework for using individualized canonical microcircuits for the construction of biologically realistic networks supporting cognitive operations.
主要认知功能,如语言、记忆和决策,被认为依赖于大量基本元素的分布式网络,称为典型微电路。在这项理论研究中,我们提出了一种新的典型微电路模型,并发现它支持两种基本的计算操作:门控机制和工作记忆。通过分岔分析,我们系统地研究了典型微电路的动力学行为,其参数可以控制局部网络平衡,即兴奋和抑制之间的关系,以及典型微电路的关键内在反馈结构。我们将典型微电路的局部行为与认知处理联系起来,并展示了在句子理解过程中句法分析的背景下,相互作用的典型微电路网络如何能够建立时空序列。这项研究为使用个体化典型微电路构建支持认知操作的生物现实网络提供了一个框架。