Suppr超能文献

关于用于统计网络的加法半拟阵模型及其在通路分析中的应用

On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis.

作者信息

Li Bing, Chun Hyonho, Zhao Hongyu

机构信息

Professor of Statistics, The Pennsylvania State University, 326 Thomas Building, University Park, PA 16802.

Assistant Professor of Statistics, Purdue University, 250 N. University Street, West Lafayette, IN 47907.

出版信息

J Am Stat Assoc. 2014 Sep;109(507):1188-1204. doi: 10.1080/01621459.2014.882842.

Abstract

We introduce a nonparametric method for estimating non-gaussian graphical models based on a new statistical relation called additive conditional independence, which is a three-way relation among random vectors that resembles the logical structure of conditional independence. Additive conditional independence allows us to use one-dimensional kernel regardless of the dimension of the graph, which not only avoids the curse of dimensionality but also simplifies computation. It also gives rise to a parallel structure to the gaussian graphical model that replaces the precision matrix by an additive precision operator. The estimators derived from additive conditional independence cover the recently introduced nonparanormal graphical model as a special case, but outperform it when the gaussian copula assumption is violated. We compare the new method with existing ones by simulations and in genetic pathway analysis.

摘要

我们基于一种称为加性条件独立性的新统计关系,引入了一种用于估计非高斯图形模型的非参数方法。加性条件独立性是随机向量之间的一种三元关系,类似于条件独立性的逻辑结构。加性条件独立性使我们能够使用一维核,而无需考虑图的维度,这不仅避免了维数灾难,还简化了计算。它还产生了一种与高斯图形模型并行的结构,该结构用加性精度算子代替了精度矩阵。从加性条件独立性导出的估计量涵盖了最近引入的非正态图形模型作为一种特殊情况,但在违反高斯copula假设时表现优于该模型。我们通过模拟和基因通路分析将新方法与现有方法进行了比较。

相似文献

3
Conditional Functional Graphical Models.条件功能图形模型
J Am Stat Assoc. 2023;118(541):257-271. doi: 10.1080/01621459.2021.1924178. Epub 2021 Jun 22.
5
Graph Estimation with Joint Additive Models.基于联合加法模型的图估计
Biometrika. 2014 Mar 1;101(1):85-101. doi: 10.1093/biomet/ast053.
10
Low-order conditional independence graphs for inferring genetic networks.用于推断遗传网络的低阶条件独立图。
Stat Appl Genet Mol Biol. 2006;5:Article1. doi: 10.2202/1544-6115.1170. Epub 2006 Jan 4.

引用本文的文献

本文引用的文献

1
Gene regulation network inference with joint sparse Gaussian graphical models.基于联合稀疏高斯图形模型的基因调控网络推断
J Comput Graph Stat. 2015 Oct 1;24(4):954-974. doi: 10.1080/10618600.2014.956876. Epub 2014 Sep 17.
4
Joint estimation of multiple graphical models.多个图形模型的联合估计
Biometrika. 2011 Mar;98(1):1-15. doi: 10.1093/biomet/asq060. Epub 2011 Feb 9.
8
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验