Suppr超能文献

研究数据共享的博弈论分析

A game theoretic analysis of research data sharing.

作者信息

Pronk Tessa E, Wiersma Paulien H, van Weerden Anne, Schieving Feike

机构信息

Utrecht University Library, Utrecht University , Utrecht , The Netherlands.

Ecology and Biodiversity, Utrecht University , Utrecht , The Netherlands.

出版信息

PeerJ. 2015 Sep 8;3:e1242. doi: 10.7717/peerj.1242. eCollection 2015.

Abstract

While reusing research data has evident benefits for the scientific community as a whole, decisions to archive and share these data are primarily made by individual researchers. In this paper we analyse, within a game theoretical framework, how sharing and reuse of research data affect individuals who share or do not share their datasets. We construct a model in which there is a cost associated with sharing datasets whereas reusing such sets implies a benefit. In our calculations, conflicting interests appear for researchers. Individual researchers are always better off not sharing and omitting the sharing cost, at the same time both sharing and not sharing researchers are better off if (almost) all researchers share. Namely, the more researchers share, the more benefit can be gained by the reuse of those datasets. We simulated several policy measures to increase benefits for researchers sharing or reusing datasets. Results point out that, although policies should be able to increase the rate of sharing researchers, and increased discoverability and dataset quality could partly compensate for costs, a better measure would be to directly lower the cost for sharing, or even turn it into a (citation-) benefit. Making data available would in that case become the most profitable, and therefore stable, strategy. This means researchers would willingly make their datasets available, and arguably in the best possible way to enable reuse.

摘要

虽然重复使用研究数据对整个科学界有明显益处,但存档和共享这些数据的决策主要由个别研究人员做出。在本文中,我们在博弈论框架内分析研究数据的共享和重复使用如何影响共享或不共享其数据集的个人。我们构建了一个模型,其中共享数据集存在成本,而重复使用这些数据集则意味着收益。在我们的计算中,研究人员出现了利益冲突。个别研究人员不共享并省去共享成本总是更好,同时,如果(几乎)所有研究人员都共享,共享和不共享的研究人员都会更好。也就是说,共享的研究人员越多,通过重复使用这些数据集获得的收益就越多。我们模拟了几种政策措施以增加共享或重复使用数据集的研究人员的收益。结果指出,尽管政策应能够提高研究人员的共享率,并且提高可发现性和数据集质量可以部分补偿成本,但更好的措施是直接降低共享成本,甚至将其转化为(引用)收益。在这种情况下,使数据可用将成为最有利可图且因此最稳定的策略。这意味着研究人员将愿意以尽可能好的方式提供其数据集以实现重复使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34fc/4579014/b5e1f418da9d/peerj-03-1242-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验