Rismani Yazdi Saeed, Shadmani Amir, Bürgel Sebastian C, Misun Patrick M, Hierlemann Andreas, Frey Olivier
ETH Zurich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Mattenstrasse 26, CH-4058 Basel, Switzerland.
Lab Chip. 2015 Nov 7;15(21):4138-47. doi: 10.1039/c5lc01000d. Epub 2015 Sep 24.
Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.
微流控悬滴网络能够在可控灌注条件下培养和分析源自不同细胞类型的三维微组织球体,并研究多组织形式下的组织间通讯。在本文中,我们介绍了一种用于悬滴网络中流量控制的紧凑型片上泵送方法。该泵包括一个直接位于其中一个悬滴上方的气动腔室,并利用液 - 气界面处的表面张力来驱动流动。对气动协议的控制可提供广泛的单向脉动和连续流动剖面。利用所提出的概念,几个独立的悬滴网络可以仅通过一条单一的气动驱动线以高保真度并行运行。对于多组织形式,不同器官模型之间的闭环介质循环以及并行的多个同步测定都是可能的。最后,我们基于在同一系统中培养的人诱导多能干细胞衍生的心脏微组织的跳动,实现了泵驱动的实时反馈控制回路。这种配置允许模拟对心脏的生理效应及其对芯片上器官模型之间血流循环的影响。