Sousa Alioscka A
Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, 04044, Brazil.
J Fluoresc. 2015 Nov;25(6):1567-75. doi: 10.1007/s10895-015-1665-3. Epub 2015 Sep 26.
Steady-state fluorescence quenching is a commonly used technique to investigate the interactions between proteins and nanoparticles, providing quantitative information on binding affinity, stoichiometry and cooperativity. However, a failure to account for the limitations and pitfalls of the methodology can lead to significant errors in data analysis and interpretation. Thus, in this communication we first draw attention to a few common pitfalls in the use of fluorescence quenching to study nanoparticle-protein interactions. For example, we discuss a frequent mistake in the use of the Hill equation to determine cooperativity. We also test using both simulated and experimental data the application of a model-independent method of analysis to generate true thermodynamic nanoparticle-protein binding isotherms. This model-free approach allows for a quantitative description of the interactions independent of assumptions about the nature of the binding process [Bujalowski W, Lohman TM (1987) Biochemistry 26: 3099; Schwarz G (2000) Biophys. Chem. 86: 119].
稳态荧光猝灭是一种常用的研究蛋白质与纳米颗粒之间相互作用的技术,可提供有关结合亲和力、化学计量和协同性的定量信息。然而,如果未能考虑该方法的局限性和陷阱,可能会导致数据分析和解释出现重大误差。因此,在本通讯中,我们首先提请注意在使用荧光猝灭研究纳米颗粒-蛋白质相互作用时的一些常见陷阱。例如,我们讨论了在使用希尔方程确定协同性时经常出现的错误。我们还使用模拟数据和实验数据测试了一种与模型无关的分析方法在生成真实热力学纳米颗粒-蛋白质结合等温线方面的应用。这种无模型方法允许对相互作用进行定量描述,而无需对结合过程的性质进行假设[布亚洛夫斯基W,洛曼TM(1987年)《生物化学》26:3099;施瓦茨G(2000年)《生物物理化学》86:119]。