Park Yang Jeong, Ha Jun Mok, Ali Ghafar, Kim Hyun Jin, Addad Yacine, Cho Sung Oh
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon, 305-701, Republic of Korea.
Nanomaterials Research Group (NRG), Physics Division (PD), PINSTECH, Islamabad, 45650, Pakistan.
Nanoscale Res Lett. 2015 Dec;10(1):377. doi: 10.1186/s11671-015-1086-x. Epub 2015 Sep 29.
We have presented a mechanism to explain why the resulting oxide morphology becomes a porous or a tubular nanostructure when a zircaloy is electrochemically anodized. A porous zirconium oxide nanostructure is always formed at an initial anodization stage, but the degree of interpore dissolution determines whether the final morphology is nanoporous or nanotubular. The interpore dissolution rate can be tuned by changing the anodization parameters such as anodization time and water content in an electrolyte. Consequently, porous or tubular oxide nanostructures can be selectively fabricated on a zircaloy surface by controlling the parameters. Based on this mechanism, zirconium oxide layers with completely nanoporous, completely nanotubular, and intermediate morphologies between a nanoporous and a nanotubular structure were controllably fabricated.
我们提出了一种机制来解释当锆合金进行电化学阳极氧化时,所得氧化物形态为何会变成多孔或管状纳米结构。在初始阳极氧化阶段总是会形成多孔氧化锆纳米结构,但孔间溶解程度决定了最终形态是纳米多孔还是纳米管状。可以通过改变阳极氧化参数,如阳极氧化时间和电解质中的水含量,来调节孔间溶解速率。因此,通过控制参数,可以在锆合金表面选择性地制备多孔或管状氧化物纳米结构。基于这一机制,可控地制备了具有完全纳米多孔、完全纳米管状以及纳米多孔和纳米管状结构之间中间形态的氧化锆层。