Kolev Vesselin, Ivanova Anela, Madjarova Galia, Aserin Abraham, Garti Nissim
The Wolfson Department of Chemical Engineering, Technion, Technion City, 32000, Haifa, Israel.
Department of Chemical Engineering, Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., Sofia, 1164, Bulgaria.
Eur Biophys J. 2016 Mar;45(2):99-112. doi: 10.1007/s00249-015-1080-3. Epub 2015 Sep 30.
Molecular dynamics (MD) was employed by means of a specific simulation protocol to investigate the equilibrium structure at 25 °C of the hexagonal inverted (HII) mesophase composed from water, 1-monoolein (GMO), and tricaprylin, with or without entrapped lysozyme. Based on robust and fast MD simulations, the study provides a comprehensive analysis and visualization of the local structure of HII mesophase containing admixtures. The most important physical insight is the possibility to observe the strong self-recovery capacity of the GMO layer, which allows the HII mesophase tubes to reorganize and host lysozyme molecules with a size bigger than the diameter of the water channel. This is a direct message to the experimenters that the HII mesophase has the potential to host molecules larger than the diameter of the water channel. Collective character of the interlipid interactions is outlined, which is not affected by the presence of the cargo and may be the reason for the efficient GMO reorganization. Another important result is the possible explanation of the role of triacylglycerols on the low-temperature stabilization of the HII mesophase. The analysis shows that despite the low amount of tricaprylin, its molecules prevent the extreme inclination of the lipid tails and thus optimize the alignment capacity of the lipid tails layer. The study also reveals that the packing frustration does not depend on the temperature and the presence of admixtures. Hence, it might be numerically defined as a universal invariant parameter of a stable HII mesophase composed of a certain lipid.
通过特定的模拟协议采用分子动力学(MD)方法,研究了由水、1 - 单油酸甘油酯(GMO)和三辛酸甘油酯组成的六方反相(HII)中间相在25℃时的平衡结构,该中间相含有或不含有包封的溶菌酶。基于强大且快速的MD模拟,该研究对含有外加剂的HII中间相的局部结构进行了全面分析和可视化。最重要的物理见解是有可能观察到GMO层强大的自我恢复能力,这使得HII中间相管能够重新组织并容纳尺寸大于水通道直径的溶菌酶分子。这直接向实验者表明,HII中间相有潜力容纳大于水通道直径的分子。概述了脂质间相互作用的集体特征,其不受货物存在的影响,这可能是GMO有效重组的原因。另一个重要结果是对三酰甘油在HII中间相低温稳定化中作用的可能解释。分析表明,尽管三辛酸甘油酯含量低,但其分子可防止脂质尾部过度倾斜,从而优化脂质尾部层的排列能力。该研究还表明,堆积受挫不依赖于温度和外加剂的存在。因此,它可能在数值上被定义为由某种脂质组成的稳定HII中间相的通用不变参数。