Kudalkar Emily M, Scarborough Emily A, Umbreit Neil T, Zelter Alex, Gestaut Daniel R, Riffle Michael, Johnson Richard S, MacCoss Michael J, Asbury Charles L, Davis Trisha N
Department of Biochemistry, University of Washington, Seattle, WA 98195;
Department of Genome Sciences, University of Washington, Seattle, WA 98195;
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):E5583-9. doi: 10.1073/pnas.1513882112. Epub 2015 Oct 1.
Multiple protein subcomplexes of the kinetochore cooperate as a cohesive molecular unit that forms load-bearing microtubule attachments that drive mitotic chromosome movements. There is intriguing evidence suggesting that central kinetochore components influence kinetochore-microtubule attachment, but the mechanism remains unclear. Here, we find that the conserved Mis12/MIND (Mtw1, Nsl1, Nnf1, Dsn1) and Ndc80 (Ndc80, Nuf2, Spc24, Spc25) complexes are connected by an extensive network of contacts, each essential for viability in cells, and collectively able to withstand substantial tensile load. Using a single-molecule approach, we demonstrate that an individual MIND complex enhances the microtubule-binding affinity of a single Ndc80 complex by fourfold. MIND itself does not bind microtubules. Instead, MIND binds Ndc80 complex far from the microtubule-binding domain and confers increased microtubule interaction of the complex. In addition, MIND activation is redundant with the effects of a mutation in Ndc80 that might alter its ability to adopt a folded conformation. Together, our results suggest a previously unidentified mechanism for regulating microtubule binding of an outer kinetochore component by a central kinetochore complex.
动粒的多个蛋白质亚复合物作为一个有凝聚力的分子单元协同作用,形成承载微管附着点,驱动有丝分裂染色体运动。有有趣的证据表明,动粒中央成分影响动粒-微管附着,但机制仍不清楚。在这里,我们发现保守的Mis12/MIND(Mtw1、Nsl1、Nnf1、Dsn1)和Ndc80(Ndc80、Nuf2, Spc24、Spc25)复合物通过广泛的接触网络相连,每个接触点对细胞存活都至关重要,并且共同能够承受相当大的拉伸负荷。使用单分子方法,我们证明单个MIND复合物可将单个Ndc80复合物的微管结合亲和力提高四倍。MIND本身不结合微管。相反,MIND在远离微管结合域的位置结合Ndc80复合物,并赋予该复合物增强的微管相互作用。此外,MIND激活与Ndc80中可能改变其折叠构象能力的突变的作用是冗余的。总之,我们的结果提示了一种以前未被识别的机制,即动粒中央复合物调节外动粒成分的微管结合。