Cell Biology and Biophysics Unit, European Molecular Biology Laboratory , Heidelberg, Germany.
Translational Radiation Oncology Unit, Deutsches Krebsforschungszentrum , Heidelberg, Germany.
J Cell Biol. 2023 Apr 3;222(4). doi: 10.1083/jcb.202209094. Epub 2023 Jan 27.
Proper chromosome segregation is crucial for cell division. In eukaryotes, this is achieved by the kinetochore, an evolutionarily conserved multiprotein complex that physically links the DNA to spindle microtubules and takes an active role in monitoring and correcting erroneous spindle-chromosome attachments. Our mechanistic understanding of these functions and how they ensure an error-free outcome of mitosis is still limited, partly because we lack a complete understanding of the kinetochore structure in the cell. In this study, we use single-molecule localization microscopy to visualize individual kinetochore complexes in situ in budding yeast. For major kinetochore proteins, we measured their abundance and position within the metaphase kinetochore. Based on this comprehensive dataset, we propose a quantitative model of the budding yeast kinetochore. While confirming many aspects of previous reports based on bulk imaging, our results present a unifying nanoscale model of the kinetochore in budding yeast.
正确的染色体分离对于细胞分裂至关重要。在真核生物中,这是通过动粒实现的,动粒是一种进化上保守的多蛋白复合物,它将 DNA 与纺锤体微管物理连接,并在监测和纠正错误的纺锤体-染色体附着方面发挥积极作用。我们对这些功能的机械理解以及它们如何确保有丝分裂无差错的结果仍然有限,部分原因是我们缺乏对细胞中动粒结构的完整理解。在这项研究中,我们使用单分子定位显微镜在出芽酵母中原位可视化单个动粒复合物。对于主要的动粒蛋白,我们测量了它们在中期动粒中的丰度和位置。基于这个全面的数据集,我们提出了一个芽殖酵母动粒的定量模型。虽然我们的结果确认了基于批量成像的许多先前报告的方面,但它们提供了一个统一的芽殖酵母动粒的纳米尺度模型。