Suppr超能文献

Bacterial growth blocked by a synthetic peptide based on the structure of a human proteinase inhibitor.

作者信息

Björck L, Akesson P, Bohus M, Trojnar J, Abrahamson M, Olafsson I, Grubb A

机构信息

Department of Medical Microbiology, University of Lund, Sweden.

出版信息

Nature. 1989 Jan 26;337(6205):385-6. doi: 10.1038/337385a0.

Abstract

Cysteine proteinases are important not only in the intracellular catabolism of peptides and proteins and in the processing of prohormones and proenzymes, but also in the penetration of normal human tissue by malignant cells and possibly microorganisms, including viruses. Cystatin C is a human cysteine proteinase inhibitor present in extracellular fluids. We have synthesized peptide derivatives mimicking the proposed proteinase-binding centre of cystatin C and find that they irreversibly inhibit cysteine proteinases. Several bacteria produce proteinases, so we tested a tripeptide derivative (Z-LVG-CHN2) for in vitro anti-bacterial activity against a large number of bacterial strains belonging to thirteen different species. It was found to inhibit specifically the growth of all strains of group A streptococci. The susceptibility of these human pathogens to the peptide was compared with that to well-established anti-streptococcal antibiotics such as tetracycline and bacitracin. Moreover, the peptide was active in vivo against group A streptococci: mice injected with lethal doses of these bacteria were cured by a single injection of Z-LVG-CHN2. The cysteine proteinase produced by group A streptococci was isolated and found to be inhibited by Z-LVG-CHN2; moreover, excess proteinase relieved the growth inhibition caused by the peptide derivative, suggesting that the antibacterial activity of Z-LVG-CHN2 is due to inhibition of this cysteine proteinase. This strategy of blocking proteinases with peptide derivatives that mimic naturally occurring inhibitors could be useful in the construction of new agents against other microorganisms, including viruses.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验