Suppr超能文献

用于生物技术的TALE核酸酶的发展

The Development of TALE Nucleases for Biotechnology.

作者信息

Ousterout David G, Gersbach Charles A

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.

Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC, 27708-0281, USA.

出版信息

Methods Mol Biol. 2016;1338:27-42. doi: 10.1007/978-1-4939-2932-0_3.

Abstract

The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed.

摘要

基于转录激活样效应物核酸酶(TALENs)的简便基因组工程技术的发展,已在科学和医学的各个领域取得了重大进展。在本综述中,我们广泛概述了TALENs的发展及其在基础科学、生物技术和生物医学应用中的技术应用。这包括TALE对DNA识别的发现、针对不同靶点设计新的TALE蛋白、基于核酸酶的编辑策略的一般进展,以及TALEN技术各种应用所特有的挑战。我们回顾了应用TALENs研究基因功能和调控、生成疾病模型以及开发基因疗法的实例。还讨论了基因组编辑的现状以及这些技术其他用途的未来方向。

相似文献

1
The Development of TALE Nucleases for Biotechnology.
Methods Mol Biol. 2016;1338:27-42. doi: 10.1007/978-1-4939-2932-0_3.
2
Origins of Programmable Nucleases for Genome Engineering.
J Mol Biol. 2016 Feb 27;428(5 Pt B):963-89. doi: 10.1016/j.jmb.2015.10.014. Epub 2015 Oct 23.
3
Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing.
Biotechnol Bioeng. 2013 Jul;110(7):1811-21. doi: 10.1002/bit.24890. Epub 2013 Apr 7.
4
Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9.
Int J Pharm. 2015 Oct 15;494(1):180-94. doi: 10.1016/j.ijpharm.2015.08.029. Epub 2015 Aug 13.
5
TALE: a tale of genome editing.
Prog Biophys Mol Biol. 2014 Jan;114(1):25-32. doi: 10.1016/j.pbiomolbio.2013.11.006. Epub 2013 Nov 27.
6
TALEN-mediated genome engineering to generate targeted mice.
Chromosome Res. 2015 Feb;23(1):43-55. doi: 10.1007/s10577-014-9457-1.
7
Targeted Mutagenesis in Zebrafish by TALENs.
Methods Mol Biol. 2016;1338:191-206. doi: 10.1007/978-1-4939-2932-0_15.
8
Advances in targeted genome editing.
Curr Opin Chem Biol. 2012 Aug;16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub 2012 Jul 20.
9
The application of transcription activator-like effector nucleases for genome editing in C. elegans.
Methods. 2014 Aug 1;68(3):389-96. doi: 10.1016/j.ymeth.2014.04.013. Epub 2014 Apr 26.
10
FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science.
Hum Gene Ther. 2016 Jun;27(6):451-63. doi: 10.1089/hum.2015.172. Epub 2016 Mar 15.

引用本文的文献

1
Genome modification in plant mitochondria.
Plant Physiol. 2025 May 30;198(2). doi: 10.1093/plphys/kiaf197.
4
Transposon Insertions into Nucleolar DNA by an Engineered Transposase Localized in the Nucleolus.
Int J Mol Sci. 2023 Oct 7;24(19):14978. doi: 10.3390/ijms241914978.
5
Gene Editing-Based Technologies for Treatment.
Biology (Basel). 2022 Jun 4;11(6):862. doi: 10.3390/biology11060862.
6
Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies.
Int J Mol Sci. 2021 Sep 26;22(19):10355. doi: 10.3390/ijms221910355.
7
Targeted protein degradation: A promise for undruggable proteins.
Cell Chem Biol. 2021 Jul 15;28(7):934-951. doi: 10.1016/j.chembiol.2021.04.011. Epub 2021 May 17.
8
Designer nucleases to treat malignant cancers driven by viral oncogenes.
Virol J. 2021 Jan 13;18(1):18. doi: 10.1186/s12985-021-01488-1.
9
RNA-guided retargeting of S transposition in human cells.
Elife. 2020 Mar 6;9:e53868. doi: 10.7554/eLife.53868.
10
Efficient genome engineering of Toxoplasma gondii using the TALEN technique.
Parasit Vectors. 2019 Mar 15;12(1):112. doi: 10.1186/s13071-019-3378-y.

本文引用的文献

1
Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection.
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9591-6. doi: 10.1073/pnas.1407473111. Epub 2014 Jun 9.
2
Development and applications of CRISPR-Cas9 for genome engineering.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.
3
Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies.
Acc Chem Res. 2014 Aug 19;47(8):2309-18. doi: 10.1021/ar500039w. Epub 2014 May 30.
4
TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity.
Nucleic Acids Res. 2014 Jun;42(10):6762-73. doi: 10.1093/nar/gku305. Epub 2014 May 3.
6
Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.
N Engl J Med. 2014 Mar 6;370(10):901-10. doi: 10.1056/NEJMoa1300662.
7
Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4061-6. doi: 10.1073/pnas.1321030111. Epub 2014 Mar 3.
8
CRISPR-Cas systems for editing, regulating and targeting genomes.
Nat Biotechnol. 2014 Apr;32(4):347-55. doi: 10.1038/nbt.2842. Epub 2014 Mar 2.
9
Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity.
Nat Methods. 2014 Apr;11(4):429-35. doi: 10.1038/nmeth.2845. Epub 2014 Feb 16.
10
Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering.
PLoS One. 2014 Jan 20;9(1):e85755. doi: 10.1371/journal.pone.0085755. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验