Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK.
Dev Biol. 2012 Oct 1;370(1):3-23. doi: 10.1016/j.ydbio.2012.06.028. Epub 2012 Jul 10.
In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.
在脊椎动物头部,感觉器官和感觉神经节的关键部分从颅基板这一特殊区域发育而来。尽管它们在细胞和功能上具有多样性,但它们起源于多能祖细胞的共同区域,后来在局部信号的影响下获得不同的身份。在这里,我们展示了一个基因调控网络,总结了我们目前对感觉细胞如何被指定、如何变得与其他外胚层衍生物不同以及如何开始多样化以产生具有不同身份的基板的理解。这项分析揭示了转录因子集的顺序激活如何随着时间的推移将外胚层划分为更小的神经中枢、神经嵴、表皮和感觉基板祖细胞区域。在这个层次结构中,每个细胞群体的信号传递时间和发育历史对确定最终结果至关重要。一个反复出现的主题是,局部信号建立了广泛的基因表达域,不同转录因子之间的相互抑制进一步细化了这些域。Six 和 Eya 网络是感觉祖细胞特化的核心。这些因子通过正反馈循环不断自我表达,从而稳定前基板命运,同时抑制神经和神经嵴特异性因子。在 Six 和 Eya 盒下游,Pax 基因与其他因子一起开始赋予基板祖细胞区域身份。虽然我们的综述强调了现有信息的丰富性,但它也指出了控制基板特化的顺式调控机制和重复使用信号输入的整合方面缺乏信息。