文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power.

作者信息

Iacovita Cristian, Stiufiuc Rares, Radu Teodora, Florea Adrian, Stiufiuc Gabriela, Dutu Alina, Mican Sever, Tetean Romulus, Lucaciu Constantin M

机构信息

Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349, Cluj-Napoca, Romania.

Interdisciplinary Research Institute on Bio-Nano-Science, Treboniu Laurian 42, 400271, Cluj-Napoca, Romania.

出版信息

Nanoscale Res Lett. 2015 Dec;10(1):391. doi: 10.1186/s11671-015-1091-0. Epub 2015 Oct 7.


DOI:10.1186/s11671-015-1091-0
PMID:26446074
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4596149/
Abstract

Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (TB) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the TB, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/c068bb9c0ede/11671_2015_1091_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/9bab61f99cc5/11671_2015_1091_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/c95619a49b56/11671_2015_1091_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/7719a572e0cc/11671_2015_1091_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/386c7f07c332/11671_2015_1091_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/5c046ed0d5d6/11671_2015_1091_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/01e7d117f15d/11671_2015_1091_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/838f4abba7f9/11671_2015_1091_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/c068bb9c0ede/11671_2015_1091_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/9bab61f99cc5/11671_2015_1091_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/c95619a49b56/11671_2015_1091_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/7719a572e0cc/11671_2015_1091_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/386c7f07c332/11671_2015_1091_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/5c046ed0d5d6/11671_2015_1091_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/01e7d117f15d/11671_2015_1091_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/838f4abba7f9/11671_2015_1091_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6483/4596149/c068bb9c0ede/11671_2015_1091_Fig8_HTML.jpg

相似文献

[1]
Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power.

Nanoscale Res Lett. 2015-12

[2]
In Vitro Intracellular Hyperthermia of Iron Oxide Magnetic Nanoparticles, Synthesized at High Temperature by a Polyol Process.

Pharmaceutics. 2020-5-6

[3]
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

Molecules. 2016-10-13

[4]
PEG Coated FeO/RGO Nano-Cube-Like Structures for Cancer Therapy via Magnetic Hyperthermia.

Nanomaterials (Basel). 2021-9-15

[5]
Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic FeO Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field.

Nanomaterials (Basel). 2023-1-22

[6]
Maghemite (γ-FeO) and γ-FeO-TiO Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency.

Materials (Basel). 2021-9-30

[7]
Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications.

Nanomaterials (Basel). 2020-10-23

[8]
Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia.

J Magn Magn Mater. 2015-8-1

[9]
Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2014-9

[10]
Intravenous Administration of Functionalized Magnetic Iron Oxide Nanoparticles Does Not Induce CNS Injury in the Rat: Influence of Spinal Cord Trauma and Cerebrolysin Treatment.

Int Rev Neurobiol. 2017-11-3

引用本文的文献

[1]
Enhancement of magnetization and optical properties of CuFeO/ZnFeO core/shell nanostructure.

Sci Rep. 2024-3-23

[2]
Optimization of Tyrosine Kinase Inhibitor-Loaded Gold Nanoparticles for Stimuli-Triggered Antileukemic Drug Release.

J Funct Biomater. 2023-7-27

[3]
The Influence of Zn Substitution on Physical Properties of CoFeO Nanoparticles.

Nanomaterials (Basel). 2022-12-31

[4]
Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment.

Pharmaceutics. 2022-11-18

[5]
Magnetite Microspheres for the Controlled Release of Rosmarinic Acid.

Pharmaceutics. 2022-10-26

[6]
Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field.

Nanomaterials (Basel). 2022-10-12

[7]
A Fast, Reliable Oil-In-Water Microemulsion Procedure for Silica Coating of Ferromagnetic Zn Ferrite Nanoparticles Capable of Inducing Cancer Cell Death In Vitro.

Biomedicines. 2022-7-8

[8]
The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles.

Pharmaceutics. 2021-12-14

[9]
Silica Coating of Ferromagnetic Iron Oxide Magnetic Nanoparticles Significantly Enhances Their Hyperthermia Performances for Efficiently Inducing Cancer Cells Death In Vitro.

Pharmaceutics. 2021-11-27

[10]
Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnFeO Nanoparticles.

Int J Mol Sci. 2020-10-21

本文引用的文献

[1]
One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate.

J Mater Chem B. 2014-7-28

[2]
Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy.

J Mater Chem B. 2013-2-14

[3]
Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia.

J Magn Magn Mater. 2009-7

[4]
Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles.

Nanoscale. 2015-6-7

[5]
Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia.

ACS Nano. 2015-2-11

[6]
Mesoscale assemblies of iron oxide nanocubes as heat mediators and image contrast agents.

Langmuir. 2015-1-20

[7]
High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions.

Nanoscale. 2015-2-7

[8]
Magnetic particle hyperthermia--a promising tumour therapy?

Nanotechnology. 2014-11-14

[9]
Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.

Nanoscale. 2014-10-21

[10]
Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia.

Sci Rep. 2013-10-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索