文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在平行和横向偏置直流磁场下锌铁氧体纳米颗粒增强的磁热性能

Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field.

作者信息

Lucaciu Constantin Mihai, Nitica Stefan, Fizesan Ionel, Filip Lorena, Bilteanu Liviu, Iacovita Cristian

机构信息

Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania.

Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania.

出版信息

Nanomaterials (Basel). 2022 Oct 12;12(20):3578. doi: 10.3390/nano12203578.


DOI:10.3390/nano12203578
PMID:36296768
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9611223/
Abstract

The collective organization of magnetic nanoparticles (MNPs) influences significantly their hyperthermic properties, relevant for their in vitro and in vivo applications. We report a systematic investigation of the effects of the concentration and the static bias direct current (DC) magnetic field superposed over the alternating magnetic field (AMF), both in a parallel and perpendicular configuration, on the specific absorption rate (SAR) by using zinc ferrite MNPs. The nonmonotonic dependence of the SAR on the concentration, with a maximum at very small concentrations (c ≤ 0.1 mgFe/mL), followed by a minimum at 0.25 mgFe/mL, and the second maximum of 3.3 kW/gFe at around 1 mgFe/mL, was explained by the passage of the MNPs from a single particle behavior to a collective one and the role of the dipolar interactions. By superposing a static 10 kA/m bias DC field on the AMF we obtained an increase in the SAR for both parallel and perpendicular orientations, up to 4285 W/g and 4070 W/g, respectively. To the best of our knowledge, this is the first experimental proof of a significant enhancement of the SAR produced by a perpendicular DC field. The effect of the DC field to increase the SAR is accompanied by an increase in the hyperthermia coercive field (H) for both configurations. No enhancement of the DC fields was noticed for the MNPs immobilized in a solid matrix but the DC field increases the H only in the parallel configuration. This translates into a higher SAR value for the perpendicular configuration as compared to the parallel configuration. These results have practical applications for magnetic hyperthermia.

摘要

磁性纳米颗粒(MNPs)的集体组织对其热疗特性有显著影响,这与其体外和体内应用相关。我们报告了一项系统研究,该研究使用铁酸锌MNPs,考察了在平行和垂直配置下,交变磁场(AMF)上叠加的浓度和静态偏置直流(DC)磁场对比吸收率(SAR)的影响。SAR对浓度的非单调依赖性,即在非常低的浓度(c≤0.1mgFe/mL)时出现最大值,在0.25mgFe/mL时出现最小值,以及在约1mgFe/mL时出现3.3kW/gFe的第二个最大值,是由MNPs从单粒子行为转变为集体行为以及偶极相互作用的作用所解释的。通过在AMF上叠加10kA/m的静态偏置直流磁场,我们在平行和垂直方向上分别获得了高达4285W/g和4070W/g的SAR增加。据我们所知,这是垂直直流磁场显著增强SAR的首个实验证据。直流磁场增加SAR的效果伴随着两种配置下热疗矫顽场(H)的增加。对于固定在固体基质中的MNPs,未观察到直流磁场的增强,但直流磁场仅在平行配置下增加H。这导致垂直配置的SAR值高于平行配置。这些结果对磁热疗具有实际应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/b3250177d8cf/nanomaterials-12-03578-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/f3995335542a/nanomaterials-12-03578-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/c0b3235587ce/nanomaterials-12-03578-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/b7f33bb41821/nanomaterials-12-03578-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/3ea2af5ffb6d/nanomaterials-12-03578-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/b3250177d8cf/nanomaterials-12-03578-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/f3995335542a/nanomaterials-12-03578-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/c0b3235587ce/nanomaterials-12-03578-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/b7f33bb41821/nanomaterials-12-03578-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/3ea2af5ffb6d/nanomaterials-12-03578-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7340/9611223/b3250177d8cf/nanomaterials-12-03578-g005.jpg

相似文献

[1]
Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field.

Nanomaterials (Basel). 2022-10-12

[2]
Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process.

Nanomaterials (Basel). 2019-10-18

[3]
How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.

Nanoscale. 2021-10-1

[4]
Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.

Cancers (Basel). 2023-3-8

[5]
Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2014-9

[6]
Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.

Int J Mol Sci. 2022-11-26

[7]
Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.

Int J Hyperthermia. 2019

[8]
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

Molecules. 2016-10-13

[9]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[10]
Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment.

Pharmaceutics. 2022-11-18

引用本文的文献

[1]
From Structure to Function: Zn/Mn-Modified Maghemite as an Advanced Nanoplatform for Magnetic Hyperthermia and Radionuclide Therapy.

ACS Appl Mater Interfaces. 2025-8-20

[2]
Evaluating Manganese-Doped Magnetic Nanoflowers for Biocompatibility and In Vitro Magnetic Hyperthermia Efficacy.

Pharmaceutics. 2025-3-18

[3]
Novel cisplatin-magnetoliposome complex shows enhanced antitumor activity via Hyperthermia.

Sci Rep. 2025-2-8

[4]
Pharmaceutical Quality by Design Approach to Develop High-Performance Nanoparticles for Magnetic Hyperthermia.

ACS Nano. 2024-6-11

[5]
Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties-From Suspension to In Vitro Studies.

Pharmaceutics. 2023-3-30

[6]
Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment.

Pharmaceutics. 2022-11-18

本文引用的文献

[1]
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications.

Nanoscale Adv. 2021-1-15

[2]
Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields.

Nanoscale Adv. 2021-11-18

[3]
Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field.

Nanoscale Adv. 2021-8-13

[4]
A Fast, Reliable Oil-In-Water Microemulsion Procedure for Silica Coating of Ferromagnetic Zn Ferrite Nanoparticles Capable of Inducing Cancer Cell Death In Vitro.

Biomedicines. 2022-7-8

[5]
Proposal of New Safety Limits for In Vivo Experiments of Magnetic Hyperthermia Antitumor Therapy.

Cancers (Basel). 2022-6-23

[6]
The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles.

Pharmaceutics. 2021-12-14

[7]
Bone Tumor Suppression in Rabbits by Hyperthermia below the Clinical Safety Limit Using Aligned Magnetic Bone Cement.

Small. 2022-1

[8]
Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance.

Nanomaterials (Basel). 2021-10-21

[9]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[10]
Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance.

Chem Mater. 2021-5-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索