文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

作者信息

Iacovita Cristian, Florea Adrian, Dudric Roxana, Pall Emoke, Moldovan Alin Iulian, Tetean Romulus, Stiufiuc Rares, Lucaciu Constantin Mihai

机构信息

Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.

Department of Cell and Molecular Biology, Faculty of Medicine, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.

出版信息

Molecules. 2016 Oct 13;21(10):1357. doi: 10.3390/molecules21101357.


DOI:10.3390/molecules21101357
PMID:27754394
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6274490/
Abstract

Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (34 nm) and large (270 nm) Fe₃O₄-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/g for the small monocrystalline MNPs and only 400 W/g for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/90ed37c6634d/molecules-21-01357-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/a02eacfb59d5/molecules-21-01357-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/5f3b00ef19a3/molecules-21-01357-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/4026235e2c2a/molecules-21-01357-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/90840ff10b52/molecules-21-01357-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/6efba5774989/molecules-21-01357-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/54d28a90c544/molecules-21-01357-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/90ed37c6634d/molecules-21-01357-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/a02eacfb59d5/molecules-21-01357-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/5f3b00ef19a3/molecules-21-01357-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/4026235e2c2a/molecules-21-01357-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/90840ff10b52/molecules-21-01357-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/6efba5774989/molecules-21-01357-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/54d28a90c544/molecules-21-01357-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/6274490/90ed37c6634d/molecules-21-01357-g007.jpg

相似文献

[1]
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

Molecules. 2016-10-13

[2]
Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles.

ACS Appl Mater Interfaces. 2020-6-24

[3]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[4]
Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process.

Nanomaterials (Basel). 2019-10-18

[5]
Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment.

ACS Appl Mater Interfaces. 2020-7-29

[6]
The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles.

Pharmaceutics. 2021-12-14

[7]
Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.

Mater Sci Eng C Mater Biol Appl. 2016-11-1

[8]
Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

Molecules. 2013-6-27

[9]
Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells.

Sci Rep. 2017-8-17

[10]
Novel kojic acid-polymer-based magnetic nanocomposites for medical applications.

Int J Nanomedicine. 2014-1-7

引用本文的文献

[1]
Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects.

Int J Mol Sci. 2024-11-8

[2]
Magnetoliposomes with Calcium-Doped Magnesium Ferrites Anchored in the Lipid Surface for Enhanced DOX Release.

Nanomaterials (Basel). 2023-9-20

[3]
Bovine Lactoferrin-Loaded Plasmonic Magnetoliposomes for Antifungal Therapeutic Applications.

Pharmaceutics. 2023-8-19

[4]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[5]
Development of pH-Sensitive Magnetoliposomes Containing Shape Anisotropic Nanoparticles for Potential Application in Combined Cancer Therapy.

Nanomaterials (Basel). 2023-3-15

[6]
Magnetic Nanoclusters Stabilized with Poly[3,4-Dihydroxybenzhydrazide] as Efficient Therapeutic Agents for Cancer Cells Destruction.

Nanomaterials (Basel). 2023-3-3

[7]
Magnetically Induced Brownian Motion of Iron Oxide Nanocages in Alternating Magnetic Fields and Their Application for Efficient siRNA Delivery.

Nano Lett. 2022-11-23

[8]
Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field.

Nanomaterials (Basel). 2022-10-12

[9]
Nanoscopy for endosomal escape quantification.

Nanoscale Adv. 2020-10-27

[10]
Multifunctional Nanoparticles Based on Iron Oxide and Gold-198 Designed for Magnetic Hyperthermia and Radionuclide Therapy as a Potential Tool for Combined HER2-Positive Cancer Treatment.

Pharmaceutics. 2022-8-12

本文引用的文献

[1]
Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications.

J Mater Chem B. 2013-10-21

[2]
Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels.

ACS Nano. 2016-7-22

[3]
Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia.

Nanomedicine (Lond). 2016-7

[4]
In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles.

Int J Mol Sci. 2015-10-15

[5]
Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power.

Nanoscale Res Lett. 2015-12

[6]
Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory.

Beilstein J Nanotechnol. 2015-8-21

[7]
Applications of Magnetic Nanoparticles in Targeted Drug Delivery System.

J Nanosci Nanotechnol. 2015-1

[8]
Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia.

ACS Nano. 2015-2-11

[9]
High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions.

Nanoscale. 2015-2-7

[10]
Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry).

Nanotechnology. 2015-1-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索