文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles.

作者信息

Fizesan Ionel, Iacovita Cristian, Pop Anca, Kiss Bela, Dudric Roxana, Stiufiuc Rares, Lucaciu Constantin Mihai, Loghin Felicia

机构信息

Department of Toxicology, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania.

Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.

出版信息

Pharmaceutics. 2021 Dec 14;13(12):2148. doi: 10.3390/pharmaceutics13122148.


DOI:10.3390/pharmaceutics13122148
PMID:34959431
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8708233/
Abstract

The clinical translation of magnetic hyperthermia (MH) needs magnetic nanoparticles (MNPs) with enhanced heating properties and good biocompatibility. Many studies were devoted lately to the increase in the heating power of iron oxide MNPs by doping the magnetite structure with divalent cations. A series of MNPs with variable Zn/Fe molar ratios (between 1/10 and 1/1) were synthesized by using a high-temperature polyol method, and their physical properties were studied with different techniques (Transmission Electron Microscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy). At low Zn doping (Zn/Fe ratio 1/10), a significant increase in the saturation magnetization (90 e.m.u./g as compared to 83 e.m.u./g for their undoped counterparts) was obtained. The MNPs' hyperthermia properties were assessed in alternating magnetic fields up to 65 kA/m at a frequency of 355 kHz, revealing specific absorption rates of up to 820 W/g. The Zn ferrite MNPs showed good biocompatibility against two cell lines (A549 cancer cell line and BJ normal cell line) with a drop of only 40% in the viability at the highest dose used (500 μg/cm). Cellular uptake experiments revealed that the MNPs enter the cells in a dose-dependent manner with an almost 50% higher capacity of cancer cells to accommodate the MNPs. In vitro hyperthermia data performed on both cell lines indicate that the cancer cells are more sensitive to MH treatment with a 90% drop in viability after 30 min of MH treatment at 30 kA/m for a dose of 250 μg/cm. Overall, our data indicate that Zn doping of iron oxide MNPs could be a reliable method to increase their hyperthermia efficiency in cancer cells.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/02c55f2880b8/pharmaceutics-13-02148-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/ca5c3e70311f/pharmaceutics-13-02148-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/436f36015c43/pharmaceutics-13-02148-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/51b81b396b66/pharmaceutics-13-02148-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/bedb595e71b1/pharmaceutics-13-02148-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/237f57200663/pharmaceutics-13-02148-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/56e674b16977/pharmaceutics-13-02148-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/f0861fa8c88f/pharmaceutics-13-02148-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/ea8ea1c38dff/pharmaceutics-13-02148-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/7b2c99bbc8aa/pharmaceutics-13-02148-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/d4e4b42b2ab5/pharmaceutics-13-02148-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/6f7d4dc7ec0d/pharmaceutics-13-02148-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/02c55f2880b8/pharmaceutics-13-02148-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/ca5c3e70311f/pharmaceutics-13-02148-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/436f36015c43/pharmaceutics-13-02148-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/51b81b396b66/pharmaceutics-13-02148-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/bedb595e71b1/pharmaceutics-13-02148-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/237f57200663/pharmaceutics-13-02148-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/56e674b16977/pharmaceutics-13-02148-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/f0861fa8c88f/pharmaceutics-13-02148-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/ea8ea1c38dff/pharmaceutics-13-02148-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/7b2c99bbc8aa/pharmaceutics-13-02148-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/d4e4b42b2ab5/pharmaceutics-13-02148-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/6f7d4dc7ec0d/pharmaceutics-13-02148-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8708233/02c55f2880b8/pharmaceutics-13-02148-g012.jpg

相似文献

[1]
The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles.

Pharmaceutics. 2021-12-14

[2]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[3]
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

Molecules. 2016-10-13

[4]
Silica Coating of Ferromagnetic Iron Oxide Magnetic Nanoparticles Significantly Enhances Their Hyperthermia Performances for Efficiently Inducing Cancer Cells Death In Vitro.

Pharmaceutics. 2021-11-27

[5]
Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance.

Chem Mater. 2021-5-11

[6]
Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process.

Nanomaterials (Basel). 2019-10-18

[7]
A Fast, Reliable Oil-In-Water Microemulsion Procedure for Silica Coating of Ferromagnetic Zn Ferrite Nanoparticles Capable of Inducing Cancer Cell Death In Vitro.

Biomedicines. 2022-7-8

[8]
Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: in vitro safety assessment in healthy cells.

Toxicol In Vitro. 2021-4

[9]
Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method.

Nanomaterials (Basel). 2019-8-16

[10]
Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic FeO Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field.

Nanomaterials (Basel). 2023-1-22

引用本文的文献

[1]
Metal ions and nanomaterials for targeted bone cancer immunotherapy.

Front Immunol. 2025-3-17

[2]
Evaluating Manganese-Doped Magnetic Nanoflowers for Biocompatibility and In Vitro Magnetic Hyperthermia Efficacy.

Pharmaceutics. 2025-3-18

[3]
Novel cisplatin-magnetoliposome complex shows enhanced antitumor activity via Hyperthermia.

Sci Rep. 2025-2-8

[4]
Emphasizing autonomic dysregulation evaluation contributes to the diagnosis of ROHHAD syndrome.

Endocr Connect. 2024-10-9

[5]
Treatment with FAP-targeted zinc ferrite nanoparticles for rheumatoid arthritis by inducing endoplasmic reticulum stress and mitochondrial damage.

Mater Today Bio. 2023-6-17

[6]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[7]
Zinc/Cerium-Substituted Magnetite Nanoparticles for Biomedical Applications.

Int J Mol Sci. 2023-3-26

[8]
Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment.

Pharmaceutics. 2022-11-18

[9]
Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field.

Nanomaterials (Basel). 2022-10-12

[10]
Hybrid Lipid Nanoformulations for Hepatoma Therapy: Sorafenib Loaded Nanoliposomes-A Preliminary Study.

Nanomaterials (Basel). 2022-8-17

本文引用的文献

[1]
Tunable magnetothermal properties of cobalt-doped magnetite-carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy.

Nanoscale Adv. 2021-1-4

[2]
Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves.

ACS Appl Bio Mater. 2021-8-16

[3]
Silica Coating of Ferromagnetic Iron Oxide Magnetic Nanoparticles Significantly Enhances Their Hyperthermia Performances for Efficiently Inducing Cancer Cells Death In Vitro.

Pharmaceutics. 2021-11-27

[4]
Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation.

Cancers (Basel). 2021-9-12

[5]
Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance.

Chem Mater. 2021-5-11

[6]
Recent Advances in Synthesis and Applications of MFeO (M = Co, Cu, Mn, Ni, Zn) Nanoparticles.

Nanomaterials (Basel). 2021-6-13

[7]
Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnFeO Nanoparticles.

Int J Mol Sci. 2020-10-21

[8]
Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment.

Nanomaterials (Basel). 2020-9-25

[9]
Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies.

Molecules. 2020-6-22

[10]
In Vitro Intracellular Hyperthermia of Iron Oxide Magnetic Nanoparticles, Synthesized at High Temperature by a Polyol Process.

Pharmaceutics. 2020-5-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索