Suppr超能文献

CDI毒素/免疫蛋白之间β-增强相互作用的多样化

Diversification of β-Augmentation Interactions between CDI Toxin/Immunity Proteins.

作者信息

Morse Robert P, Willett Julia L E, Johnson Parker M, Zheng Jing, Credali Alfredo, Iniguez Angelina, Nowick James S, Hayes Christopher S, Goulding Celia W

机构信息

Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA.

Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA.

出版信息

J Mol Biol. 2015 Nov 20;427(23):3766-84. doi: 10.1016/j.jmb.2015.09.020. Epub 2015 Oct 9.

Abstract

Contact-dependent growth inhibition (CDI) is a widespread mechanism of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion proteins. CdiA effectors carry diverse C-terminal toxin domains (CdiA-CT), which are delivered into neighboring target cells to inhibit growth. CDI(+) bacteria also produce CdiI immunity proteins that bind specifically to cognate CdiA-CT toxins and protect the cell from auto-inhibition. Here, we compare the structures of homologous CdiA-CT/CdiI complexes from Escherichia coli EC869 and Yersinia pseudotuberculosis YPIII to explore the evolution of CDI toxin/immunity protein interactions. Both complexes share an unusual β-augmentation interaction, in which the toxin domain extends a β-hairpin into the immunity protein to complete a six-stranded anti-parallel sheet. However, the specific contacts differ substantially between the two complexes. The EC869 β-hairpin interacts mainly through direct H-bond and ion-pair interactions, whereas the YPIII β-hairpin pocket contains more hydrophobic contacts and a network of bridging water molecules. In accord with these differences, we find that each CdiI protein only protects target bacteria from its cognate CdiA-CT toxin. The compact β-hairpin binding pocket within the immunity protein represents a tractable system for the rationale design of small molecules to block CdiA-CT/CdiI complex formation. We synthesized a macrocyclic peptide mimic of the β-hairpin from EC869 toxin and solved its structure in complex with cognate immunity protein. These latter studies suggest that small molecules could potentially be used to disrupt CDI toxin/immunity complexes.

摘要

接触依赖性生长抑制(CDI)是一种广泛存在的细菌间竞争机制,由双组分分泌蛋白CdiB/CdiA家族介导。CdiA效应器携带多种C末端毒素结构域(CdiA-CT),这些结构域被递送至邻近的靶细胞以抑制其生长。CDI(+)细菌还产生CdiI免疫蛋白,该蛋白特异性结合同源CdiA-CT毒素并保护细胞免受自身抑制。在此,我们比较了来自大肠杆菌EC869和假结核耶尔森菌YPIII的同源CdiA-CT/CdiI复合物的结构,以探索CDI毒素/免疫蛋白相互作用的进化。两种复合物都具有一种不寻常的β-增强相互作用,其中毒素结构域将一个β-发夹延伸至免疫蛋白中以形成一个六链反平行片层。然而,两种复合物之间的具体接触存在很大差异。EC869的β-发夹主要通过直接氢键和离子对相互作用,而YPIII的β-发夹口袋包含更多疏水接触和一个桥连水分子网络。与这些差异一致,我们发现每种CdiI蛋白仅保护靶细菌免受其同源CdiA-CT毒素的侵害。免疫蛋白内紧凑的β-发夹结合口袋代表了一个易于处理的系统,可用于合理设计小分子以阻断CdiA-CT/CdiI复合物的形成。我们合成了一种来自EC869毒素的β-发夹大环肽模拟物,并解析了其与同源免疫蛋白复合物的结构。这些后续研究表明小分子可能潜在地用于破坏CDI毒素/免疫复合物。

相似文献

1
Diversification of β-Augmentation Interactions between CDI Toxin/Immunity Proteins.
J Mol Biol. 2015 Nov 20;427(23):3766-84. doi: 10.1016/j.jmb.2015.09.020. Epub 2015 Oct 9.
2
Unraveling the essential role of CysK in CDI toxin activation.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9792-7. doi: 10.1073/pnas.1607112113. Epub 2016 Aug 16.
3
A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria.
Nature. 2010 Nov 18;468(7322):439-42. doi: 10.1038/nature09490.
4
Functional Diversity of Cytotoxic tRNase/Immunity Protein Complexes from Burkholderia pseudomallei.
J Biol Chem. 2016 Sep 9;291(37):19387-400. doi: 10.1074/jbc.M116.736074. Epub 2016 Jul 20.
5
Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins.
J Mol Biol. 2015 Nov 20;427(23):3754-65. doi: 10.1016/j.jmb.2015.09.010. Epub 2015 Sep 24.
7
The structure of a contact-dependent growth-inhibition (CDI) immunity protein from Neisseria meningitidis MC58.
Acta Crystallogr F Struct Biol Commun. 2015 Jun;71(Pt 6):702-9. doi: 10.1107/S2053230X15006585. Epub 2015 May 20.
8
Convergent Evolution of the Barnase/EndoU/Colicin/RelE (BECR) Fold in Antibacterial tRNase Toxins.
Structure. 2019 Nov 5;27(11):1660-1674.e5. doi: 10.1016/j.str.2019.08.010. Epub 2019 Sep 9.
9
Toxin on a stick: modular CDI toxin delivery systems play roles in bacterial competition.
Virulence. 2011 Jul-Aug;2(4):356-9. doi: 10.4161/viru.2.4.16463. Epub 2011 Jul 1.
10
Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11341-6. doi: 10.1073/pnas.1512124112. Epub 2015 Aug 24.

引用本文的文献

1
From Concepts to Inhibitors: A Blueprint for Targeting Protein-Protein Interactions.
Chem Rev. 2025 Jul 23;125(14):6819-6869. doi: 10.1021/acs.chemrev.5c00046. Epub 2025 Jun 24.
2
Contact-dependent growth inhibition (CDI) systems deploy a large family of polymorphic ionophoric toxins for inter-bacterial competition.
PLoS Genet. 2024 Nov 26;20(11):e1011494. doi: 10.1371/journal.pgen.1011494. eCollection 2024 Nov.
3
Design of Protein Segments and Peptides for Binding to Protein Targets.
Biodes Res. 2022 Apr 15;2022:9783197. doi: 10.34133/2022/9783197. eCollection 2022.
4
Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors.
Front Mol Biosci. 2022 Apr 26;9:866854. doi: 10.3389/fmolb.2022.866854. eCollection 2022.
5
Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function.
Pept Sci (Hoboken). 2020 Jan;112(1). doi: 10.1002/pep2.24145. Epub 2020 Jan 2.
7
Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery.
Annu Rev Microbiol. 2020 Sep 8;74:497-520. doi: 10.1146/annurev-micro-020518-115638. Epub 2020 Jul 17.
8
Molecular and Biochemical Characterization of YeeF/YezG, a Polymorphic Toxin-Immunity Protein Pair From .
Front Microbiol. 2020 Feb 14;11:95. doi: 10.3389/fmicb.2020.00095. eCollection 2020.
9
Convergent Evolution of the Barnase/EndoU/Colicin/RelE (BECR) Fold in Antibacterial tRNase Toxins.
Structure. 2019 Nov 5;27(11):1660-1674.e5. doi: 10.1016/j.str.2019.08.010. Epub 2019 Sep 9.
10
The Cytoplasm-Entry Domain of Antibacterial CdiA Is a Dynamic α-Helical Bundle with Disulfide-Dependent Structural Features.
J Mol Biol. 2019 Aug 9;431(17):3203-3216. doi: 10.1016/j.jmb.2019.05.049. Epub 2019 Jun 8.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
A new family of secreted toxins in pathogenic Neisseria species.
PLoS Pathog. 2015 Jan 8;11(1):e1004592. doi: 10.1371/journal.ppat.1004592. eCollection 2015 Jan.
3
Selection of orphan Rhs toxin expression in evolved Salmonella enterica serovar Typhimurium.
PLoS Genet. 2014 Mar 27;10(3):e1004255. doi: 10.1371/journal.pgen.1004255. eCollection 2014 Mar.
4
X-ray crystallographic structures of trimers and higher-order oligomeric assemblies of a peptide derived from Aβ(17-36).
J Am Chem Soc. 2014 Apr 16;136(15):5595-8. doi: 10.1021/ja5017409. Epub 2014 Apr 3.
5
CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria.
Structure. 2014 May 6;22(5):707-18. doi: 10.1016/j.str.2014.02.012. Epub 2014 Mar 20.
6
Structures of oligomers of a peptide from β-amyloid.
J Am Chem Soc. 2013 Aug 21;135(33):12460-7. doi: 10.1021/ja4068854. Epub 2013 Aug 8.
8
Bacterial contact-dependent growth inhibition.
Trends Microbiol. 2013 May;21(5):230-7. doi: 10.1016/j.tim.2013.02.003. Epub 2013 Mar 7.
9
Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition.
PLoS One. 2013;8(2):e57609. doi: 10.1371/journal.pone.0057609. Epub 2013 Feb 28.
10
Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21480-5. doi: 10.1073/pnas.1216238110. Epub 2012 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验