Johnson Parker M, Gucinski Grant C, Garza-Sánchez Fernando, Wong Timothy, Hung Li-Wei, Hayes Christopher S, Goulding Celia W
From the Departments of Molecular Biology and Biochemistry and.
the Biomolecular Science and Engineering Program and.
J Biol Chem. 2016 Sep 9;291(37):19387-400. doi: 10.1074/jbc.M116.736074. Epub 2016 Jul 20.
Contact-dependent growth inhibition (CDI) is a widespread mechanism of inter-bacterial competition. CDI(+) bacteria deploy large CdiA effector proteins, which carry variable C-terminal toxin domains (CdiA-CT). CDI(+) cells also produce CdiI immunity proteins that specifically neutralize cognate CdiA-CT toxins to prevent auto-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiI(E479) toxin/immunity protein complex from Burkholderia pseudomallei isolate E479. The CdiA-CT(E479) tRNase domain contains a core α/β-fold that is characteristic of PD(D/E)XK superfamily nucleases. Unexpectedly, the closest structural homolog of CdiA-CT(E479) is another CDI toxin domain from B. pseudomallei 1026b. Although unrelated in sequence, the two B. pseudomallei nuclease domains share similar folds and active-site architectures. By contrast, the CdiI(E479) and CdiI(1026b) immunity proteins share no significant sequence or structural homology. CdiA-CT(E479) and CdiA-CT(1026b) are both tRNases; however, each nuclease cleaves tRNA at a distinct position. We used a molecular docking approach to model each toxin bound to tRNA substrate. The resulting models fit into electron density envelopes generated by small-angle x-ray scattering analysis of catalytically inactive toxin domains bound stably to tRNA. CdiA-CT(E479) is the third CDI toxin found to have structural homology to the PD(D/E)XK superfamily. We propose that CDI systems exploit the inherent sequence variability and active-site plasticity of PD(D/E)XK nucleases to generate toxin diversity. These findings raise the possibility that many other uncharacterized CDI toxins may belong to the PD(D/E)XK superfamily.
接触依赖性生长抑制(CDI)是细菌间竞争的一种广泛机制。携带CDI的细菌会分泌大型CdiA效应蛋白,该蛋白带有可变的C端毒素结构域(CdiA-CT)。携带CDI的细胞还会产生CdiI免疫蛋白,该蛋白能特异性中和同源CdiA-CT毒素以防止自我抑制。在此,我们展示了来自类鼻疽杆菌分离株E479的CdiA-CT/CdiI(E479)毒素/免疫蛋白复合物的晶体结构。CdiA-CT(E479)的tRNase结构域包含一个核心α/β折叠,这是PD(D/E)XK超家族核酸酶的特征。出乎意料的是,CdiA-CT(E479)最接近的结构同源物是来自类鼻疽杆菌1026b的另一个CDI毒素结构域。尽管序列不相关,但这两个类鼻疽杆菌核酸酶结构域具有相似的折叠和活性位点结构。相比之下,CdiI(E479)和CdiI(1026b)免疫蛋白在序列或结构上没有明显的同源性。CdiA-CT(E479)和CdiA-CT(1026b)都是tRNase;然而,每种核酸酶在不同位置切割tRNA。我们使用分子对接方法对与tRNA底物结合的每种毒素进行建模。所得模型与通过对与tRNA稳定结合的无催化活性毒素结构域进行小角X射线散射分析生成的电子密度包络相匹配。CdiA-CT(E479)是发现与PD(D/E)XK超家族具有结构同源性的第三种CDI毒素。我们提出,CDI系统利用PD(D/E)XK核酸酶固有的序列变异性和活性位点可塑性来产生毒素多样性。这些发现增加了许多其他未表征的CDI毒素可能属于PD(D/E)XK超家族的可能性。