Halvorsen Tiffany M, Schroeder Kaitlin A, Jones Allison M, Hammarlöf Disa, Low David A, Koskiniemi Sanna, Hayes Christopher S
Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America.
Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America.
PLoS Genet. 2024 Nov 26;20(11):e1011494. doi: 10.1371/journal.pgen.1011494. eCollection 2024 Nov.
Contact-dependent growth inhibition (CDI) is a widespread form of inter-bacterial competition mediated by CdiA effector proteins. CdiA is presented on the inhibitor cell surface and delivers its toxic C-terminal region (CdiA-CT) into neighboring bacteria upon contact. Inhibitor cells also produce CdiI immunity proteins, which neutralize CdiA-CT toxins to prevent auto-inhibition. Here, we describe a diverse group of CDI ionophore toxins that dissipate the transmembrane potential in target bacteria. These CdiA-CT toxins are composed of two distinct domains based on AlphaFold2 modeling. The C-terminal ionophore domains are all predicted to form five-helix bundles capable of spanning the cell membrane. The N-terminal "entry" domains are variable in structure and appear to hijack different integral membrane proteins to promote toxin assembly into the lipid bilayer. The CDI ionophores deployed by E. coli isolates partition into six major groups based on their entry domain structures. Comparative sequence analyses led to the identification of receptor proteins for ionophore toxins from groups 1 & 3 (AcrB), group 2 (SecY) and groups 4 (YciB). Using forward genetic approaches, we identify novel receptors for the group 5 and 6 ionophores. Group 5 exploits homologous putrescine import proteins encoded by puuP and plaP, and group 6 toxins recognize di/tripeptide transporters encoded by paralogous dtpA and dtpB genes. Finally, we find that the ionophore domains exhibit significant intra-group sequence variation, particularly at positions that are predicted to interact with CdiI. Accordingly, the corresponding immunity proteins are also highly polymorphic, typically sharing only ~30% sequence identity with members of the same group. Competition experiments confirm that the immunity proteins are specific for their cognate ionophores and provide no protection against other toxins from the same group. The specificity of this protein interaction network provides a mechanism for self/nonself discrimination between E. coli isolates.
接触依赖性生长抑制(CDI)是由CdiA效应蛋白介导的一种广泛存在的细菌间竞争形式。CdiA呈现在抑制细胞表面,并在接触时将其有毒的C末端区域(CdiA-CT)传递到邻近细菌中。抑制细胞还产生CdiI免疫蛋白,该蛋白可中和CdiA-CT毒素以防止自我抑制。在此,我们描述了一组多样的CDI离子载体毒素,它们可消除靶细菌中的跨膜电位。基于AlphaFold2建模,这些CdiA-CT毒素由两个不同的结构域组成。C末端离子载体结构域均预计形成能够跨越细胞膜的五螺旋束。N末端“进入”结构域结构可变,似乎劫持不同的整合膜蛋白以促进毒素组装到脂质双层中。大肠杆菌分离株所部署的CDI离子载体根据其进入结构域结构分为六个主要组。比较序列分析导致鉴定出第1组和第3组(AcrB)、第2组(SecY)以及第4组(YciB)离子载体毒素的受体蛋白。使用正向遗传学方法,我们鉴定出了第5组和第6组离子载体的新型受体。第5组利用由puuP和plaP编码的同源腐胺导入蛋白,第6组毒素识别由旁系同源dtpA和dtpB基因编码的二肽/三肽转运蛋白。最后,我们发现离子载体结构域在组内表现出显著的序列变异,特别是在预计与CdiI相互作用的位置。因此,相应的免疫蛋白也具有高度多态性,通常与同组成员仅共享约30%的序列同一性。竞争实验证实,免疫蛋白对其同源离子载体具有特异性,并且不能为同一组中的其他毒素提供保护。这种蛋白质相互作用网络的特异性为大肠杆菌分离株之间的自我/非自我识别提供了一种机制。