Willett Julia L E, Gucinski Grant C, Fatherree Jackson P, Low David A, Hayes Christopher S
Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93016-9625;
Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93016-9625.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11341-6. doi: 10.1073/pnas.1512124112. Epub 2015 Aug 24.
Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI+ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identified ptsG, metI, rbsC, gltK/gltJ, yciB, and ftsH mutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal "translocation domains." These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.
接触依赖性生长抑制(CDI)系统的功能是将毒素传递到邻近的细菌细胞中。携带CDI的细菌会分泌丝状的CdiA效应蛋白,该蛋白从抑制细胞表面延伸出来,与邻近靶细菌上的受体相互作用。一旦与受体结合,CdiA就会传递一种源自其C末端区域的毒素。细菌之间的CdiA C末端(CdiA-CT)序列高度可变,这反映了CDI毒素活性的多样性。在这里,我们表明几个CdiA-CT区域由两个结构域组成,每个结构域在CDI过程中都具有独特的功能。C末端结构域通常具有有毒的核酸酶活性,而N末端结构域似乎控制毒素向靶细菌中的转运。通过遗传学方法,我们鉴定出了对特定CdiA-CT具有抗性的ptsG、metI、rbsC、gltK/gltJ、yciB和ftsH突变。这些抗性突变均破坏内膜蛋白的表达,这表明这些蛋白被用于毒素进入靶细胞。此外,每个突变仅能保护细胞免受具有相似N末端结构域的一部分CdiA-CT的抑制作用。我们提出,在将CdiA-CT传递到周质后,N末端结构域会结合特定的内膜受体,以便随后转运到细胞质中。与该模型一致,我们发现CDI核酸酶结构域是模块化的有效载荷,当与异源N末端“转运结构域”融合时,可以通过不同的导入途径重新定向。这些结果突出了CDI毒素传递的可塑性,并表明可以利用潜在的转运机制将其他抗菌剂传递到革兰氏阴性细菌中。