Suppr超能文献

静息态脑磁图功率在传感器空间和源空间的重测信度。

Test-retest reliability of resting-state magnetoencephalography power in sensor and source space.

作者信息

Martín-Buro María Carmen, Garcés Pilar, Maestú Fernando

机构信息

Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology, Madrid, Spain.

Psychology Division, Cardenal Cisneros University College, Complutense University of Madrid, Spain.

出版信息

Hum Brain Mapp. 2016 Jan;37(1):179-90. doi: 10.1002/hbm.23027. Epub 2015 Oct 14.

Abstract

Several studies have reported changes in spontaneous brain rhythms that could be used as clinical biomarkers or in the evaluation of neuropsychological and drug treatments in longitudinal studies using magnetoencephalography (MEG). There is an increasing necessity to use these measures in early diagnosis and pathology progression; however, there is a lack of studies addressing how reliable they are. Here, we provide the first test-retest reliability estimate of MEG power in resting-state at sensor and source space. In this study, we recorded 3 sessions of resting-state MEG activity from 24 healthy subjects with an interval of a week between each session. Power values were estimated at sensor and source space with beamforming for classical frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20 Hz), high beta (20-30 Hz), and gamma (30-45 Hz). Then, test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). We also evaluated the relation between source power and the within-subject variability. In general, ICC of theta, alpha, and low beta power was fairly high (ICC > 0.6) while in delta and gamma power was lower. In source space, fronto-posterior alpha, frontal beta, and medial temporal theta showed the most reliable profiles. Signal-to-noise ratio could be partially responsible for reliability as low signal intensity resulted in high within-subject variability, but also the inherent nature of some brain rhythms in resting-state might be driving these reliability patterns. In conclusion, our results described the reliability of MEG power estimates in each frequency band, which could be considered in disease characterization or clinical trials.

摘要

多项研究报告了自发性脑节律的变化,这些变化可作为临床生物标志物,或用于在使用脑磁图(MEG)的纵向研究中评估神经心理学和药物治疗。在早期诊断和病理进展中使用这些测量方法的必要性日益增加;然而,缺乏关于它们可靠性的研究。在此,我们首次提供了静息状态下MEG功率在传感器和源空间的重测可靠性估计。在本研究中,我们记录了24名健康受试者的3次静息状态MEG活动,每次记录之间间隔一周。使用波束形成方法在传感器和源空间估计经典频段(δ波(2 - 4Hz)、θ波(4 - 8Hz)、α波(8 - 13Hz)、低β波(13 - 20Hz)、高β波(20 - 30Hz)和γ波(30 - 45Hz))的功率值。然后,使用组内相关系数(ICC)评估重测可靠性。我们还评估了源功率与受试者内变异性之间的关系。总体而言,θ波、α波和低β波功率的ICC相当高(ICC > 0.6),而δ波和γ波功率的ICC较低。在源空间中,前后α波、额叶β波和内侧颞叶θ波显示出最可靠的特征。信噪比可能部分影响可靠性,因为低信号强度导致受试者内变异性高,但静息状态下某些脑节律的固有性质也可能导致这些可靠性模式。总之,我们的结果描述了每个频段MEG功率估计的可靠性,这在疾病特征描述或临床试验中可予以考虑。

相似文献

2
Three-year reliability of MEG resting-state oscillatory power.静息态脑磁图(MEG)振荡功率三年可靠性。
Neuroimage. 2021 Nov;243:118516. doi: 10.1016/j.neuroimage.2021.118516. Epub 2021 Aug 25.
10
Reproducibility of graph metrics of human brain functional networks.人类脑功能网络图形指标的可重复性。
Neuroimage. 2009 Oct 1;47(4):1460-8. doi: 10.1016/j.neuroimage.2009.05.035. Epub 2009 May 20.

引用本文的文献

本文引用的文献

1
Wakefulness delta waves increase after cortical plasticity induction.皮层可塑性诱导后觉醒δ波增加。
Clin Neurophysiol. 2015 Jun;126(6):1221-1227. doi: 10.1016/j.clinph.2014.09.029. Epub 2014 Oct 12.
3
Frontal theta as a mechanism for cognitive control.额叶θ波作为认知控制的一种机制。
Trends Cogn Sci. 2014 Aug;18(8):414-21. doi: 10.1016/j.tics.2014.04.012. Epub 2014 May 15.
4
Multi-session statistics on beamformed MEG data.关于波束形成的脑磁图数据的多会话统计。
Neuroimage. 2014 Jul 15;95(100):330-5. doi: 10.1016/j.neuroimage.2013.12.026. Epub 2014 Jan 9.
7
MNE software for processing MEG and EEG data.MEG 和 EEG 数据处理的 MNE 软件。
Neuroimage. 2014 Feb 1;86:446-60. doi: 10.1016/j.neuroimage.2013.10.027. Epub 2013 Oct 24.
8
10
A short review of alpha activity in cognitive processes and in cognitive impairment.认知过程及认知障碍中 alpha 活动的简要回顾。
Int J Psychophysiol. 2012 Oct;86(1):25-38. doi: 10.1016/j.ijpsycho.2012.07.001. Epub 2012 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验