Young Rosanna E B, Purton Saul
Algal Research Group, Institute of Structural and Molecular Biology, University College London, London, UK.
Plant Biotechnol J. 2016 May;14(5):1251-60. doi: 10.1111/pbi.12490. Epub 2015 Oct 15.
There is a growing interest in the use of microalgae as low-cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein-coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome-binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co-introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae.
人们越来越关注利用微藻作为低成本宿主来合成重组产品,如治疗性蛋白质和生物活性代谢物。特别是叶绿体,其基因组小且易于遗传操作(质体基因组),代谢复杂,是一个有吸引力的基因工程平台。在莱茵衣藻中,质体基因组中的69个蛋白质编码基因都不使用终止密码子UGA,因此这个备用密码子可作为一种有用的合成生物学工具。在此,我们报道了将该密码子分配为色氨酸密码子,并表明这可作为解决叶绿体工程中一个关键问题的有效策略:即当基因产物对细菌有毒时,在大肠杆菌中组装表达盒。这个问题的出现是因为此类表达盒中使用的叶绿体启动子和核糖体结合位点的原核性质常常导致转基因在大肠杆菌中表达,这在克隆代谢酶、抗菌蛋白和整合膜蛋白的基因时是一个潜在问题。我们表明,在转基因内将色氨酸密码子替换为备用密码子(UGG→UGA)可防止在大肠杆菌和叶绿体中的功能性表达,并且共同引入携带修饰反密码子的质体trnW基因仅通过允许UGA通读在叶绿体中恢复功能。我们通过表达两个已知对大肠杆菌高度有毒的基因来证明该系统的实用性,并讨论其在为转基因微藻提供更高水平生物安全性方面的价值。