Li Jie, Convertino Matteo
Nexus Group, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan.
GI-CORE Global Station for Big Data and Cybersecurity, Hokkaido University, Sapporo 060-0814, Japan.
Entropy (Basel). 2019 May 17;21(5):506. doi: 10.3390/e21050506.
The human microbiome is an extremely complex ecosystem considering the number of bacterial species, their interactions, and its variability over space and time. Here, we untangle the complexity of the human microbiome for the Irritable Bowel Syndrome (IBS) that is the most prevalent functional gastrointestinal disorder in human populations. Based on a novel information theoretic network inference model, we detected potential species interaction networks that are functionally and structurally different for healthy and unhealthy individuals. Healthy networks are characterized by a neutral symmetrical pattern of species interactions and scale-free topology versus random unhealthy networks. We detected an inverse scaling relationship between species total outgoing information flow, meaningful of node interactivity, and relative species abundance (RSA). The top ten interacting species are also the least relatively abundant for the healthy microbiome and the most detrimental. These findings support the idea about the diminishing role of network hubs and how these should be defined considering the total outgoing information flow rather than the node degree. Macroecologically, the healthy microbiome is characterized by the highest Pareto total species diversity growth rate, the lowest species turnover, and the smallest variability of RSA for all species. This result challenges current views that posit a universal association between healthy states and the highest absolute species diversity in ecosystems. Additionally, we show how the transitory microbiome is unstable and microbiome criticality is not necessarily at the phase transition between healthy and unhealthy states. We stress the importance of considering portfolios of interacting pairs versus single node dynamics when characterizing the microbiome and of ranking these pairs in terms of their interactions (i.e., species collective behavior) that shape transition from healthy to unhealthy states. The macroecological characterization of the microbiome is useful for public health and disease diagnosis and etiognosis, while species-specific analyses can detect beneficial species leading to personalized design of pre- and probiotic treatments and microbiome engineering.
考虑到细菌种类的数量、它们之间的相互作用以及其在空间和时间上的变异性,人类微生物组是一个极其复杂的生态系统。在此,我们梳理了肠易激综合征(IBS)这一人类群体中最普遍的功能性胃肠疾病的人类微生物组的复杂性。基于一种新颖的信息论网络推理模型,我们检测到了健康个体和不健康个体在功能和结构上不同的潜在物种相互作用网络。健康网络的特征是物种相互作用的中性对称模式和无标度拓扑结构,而不健康网络则是随机的。我们检测到物种总输出信息流(即节点交互性的意义)与相对物种丰度(RSA)之间存在反比关系。对于健康微生物组而言,十大相互作用物种的相对丰度也是最低的,且危害最大。这些发现支持了关于网络枢纽作用减弱的观点,以及应如何根据总输出信息流而非节点度来定义这些枢纽。从宏观生态学角度来看,健康微生物组的特征是帕累托总物种多样性增长率最高、物种周转率最低以及所有物种的RSA变异性最小。这一结果挑战了当前认为健康状态与生态系统中最高绝对物种多样性存在普遍关联的观点。此外,我们展示了过渡性微生物组是不稳定的,且微生物组的临界状态不一定处于健康与不健康状态之间的相变阶段。我们强调在表征微生物组时考虑相互作用对的组合而非单节点动态的重要性,以及根据塑造从健康到不健康状态转变的相互作用(即物种集体行为)对这些对进行排序的重要性。微生物组的宏观生态学表征对于公共卫生、疾病诊断和病因诊断很有用,而物种特异性分析可以检测出有益物种,从而实现益生元和益生菌治疗以及微生物组工程的个性化设计。