Suppr超能文献

可穿戴传感器和生物特征变量在人工胰腺系统中的应用。

Use of Wearable Sensors and Biometric Variables in an Artificial Pancreas System.

机构信息

Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S. Dearborn St., Chicago, IL 60616, USA.

Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W. 33rd St., Chicago, IL 60616, USA.

出版信息

Sensors (Basel). 2017 Mar 7;17(3):532. doi: 10.3390/s17030532.

Abstract

An artificial pancreas (AP) computes the optimal insulin dose to be infused through an insulin pump in people with Type 1 Diabetes (T1D) based on information received from a continuous glucose monitoring (CGM) sensor. It has been recognized that exercise is a major challenge in the development of an AP system. The use of biometric physiological variables in an AP system may be beneficial for prevention of exercise-induced challenges and better glucose regulation. The goal of the present study is to find a correlation between biometric variables such as heart rate (HR), heat flux (HF), skin temperature (ST), near-body temperature (NBT), galvanic skin response (GSR), and energy expenditure (EE), 2D acceleration-mean of absolute difference (MAD) and changes in glucose concentrations during exercise via partial least squares (PLS) regression and variable importance in projection (VIP) in order to determine which variables would be most useful to include in a future artificial pancreas. PLS and VIP analyses were performed on data sets that included seven different types of exercises. Data were collected from 26 clinical experiments. Clinical results indicate ST to be the most consistently important (important for six out of seven tested exercises) variable over all different exercises tested. EE and HR are also found to be important variables over several types of exercise. We also found that the importance of GSR and NBT observed in our experiments might be related to stress and the effect of changes in environmental temperature on glucose concentrations. The use of the biometric measurements in an AP system may provide better control of glucose concentration.

摘要

人工胰腺(AP)根据连续血糖监测(CGM)传感器接收到的信息,计算出要通过胰岛素泵输注给 1 型糖尿病(T1D)患者的最佳胰岛素剂量。已经认识到,运动是开发 AP 系统的主要挑战。在 AP 系统中使用生物计量生理变量可能有助于预防运动引起的挑战和更好的血糖调节。本研究的目的是通过偏最小二乘(PLS)回归和变量重要性投影(VIP),找到心率(HR)、热通量(HF)、皮肤温度(ST)、近体温度(NBT)、皮肤电反应(GSR)和能量消耗(EE)等生物计量变量与运动期间葡萄糖浓度变化之间的相关性,以确定在未来的人工胰腺中纳入哪些变量最有用。对包括七种不同类型运动的数据集进行了 PLS 和 VIP 分析。数据来自 26 项临床实验。临床结果表明,ST 是所有不同测试运动中最重要的变量(六种运动中均很重要)。EE 和 HR 也被发现是几种运动中的重要变量。我们还发现,我们实验中观察到的 GSR 和 NBT 的重要性可能与应激以及环境温度变化对葡萄糖浓度的影响有关。在 AP 系统中使用生物计量测量可能会提供更好的血糖浓度控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99a3/5375818/67b6274d0bf5/sensors-17-00532-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验