Suppr超能文献

土壤微生物群中存在多种具有潜在临床相关性的碳青霉烯水解β-内酰胺酶。

The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance.

作者信息

Gudeta Dereje Dadi, Bortolaia Valeria, Amos Greg, Wellington Elizabeth M H, Brandt Kristian K, Poirel Laurent, Nielsen Jesper Boye, Westh Henrik, Guardabassi Luca

机构信息

Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.

School of Life Sciences, University of Warwick, Coventry, United Kingdom.

出版信息

Antimicrob Agents Chemother. 2015 Oct 19;60(1):151-60. doi: 10.1128/AAC.01424-15. Print 2016 Jan.

Abstract

The origin of carbapenem-hydrolyzing metallo-β-lactamases (MBLs) acquired by clinical bacteria is largely unknown. We investigated the frequency, host range, diversity, and functionality of MBLs in the soil microbiota. Twenty-five soil samples of different types and geographical origins were analyzed by antimicrobial selective culture, followed by phenotypic testing and expression of MBL-encoding genes in Escherichia coli, and whole-genome sequencing of MBL-producing strains was performed. Carbapenemase activity was detected in 29 bacterial isolates from 13 soil samples, leading to identification of seven new MBLs in presumptive Pedobacter roseus (PEDO-1), Pedobacter borealis (PEDO-2), Pedobacter kyungheensis (PEDO-3), Chryseobacterium piscium (CPS-1), Epilithonimonas tenax (ESP-1), Massilia oculi (MSI-1), and Sphingomonas sp. (SPG-1). Carbapenemase production was likely an intrinsic feature in Chryseobacterium and Epilithonimonas, as it occurred in reference strains of different species within these genera. The amino acid identity to MBLs described in clinical bacteria ranged between 40 and 69%. Remarkable features of the new MBLs included prophage integration of the encoding gene (PEDO-1), an unusual amino acid residue at a key position for MBL structure and catalysis (CPS-1), and overlap with a putative OXA β-lactamase (MSI-1). Heterologous expression of PEDO-1, CPS-1, and ESP-1in E. coli significantly increased the MICs of ampicillin, ceftazidime, cefpodoxime, cefoxitin, and meropenem. Our study shows that MBL producers are widespread in soil and include four genera that were previously not known to produce MBLs. The MBLs produced by these bacteria are distantly related to MBLs identified in clinical samples but constitute resistance determinants of clinical relevance if acquired by pathogenic bacteria.

摘要

临床细菌获得的碳青霉烯水解金属β-内酰胺酶(MBLs)的起源在很大程度上尚不清楚。我们调查了土壤微生物群中MBLs的频率、宿主范围、多样性和功能。通过抗菌选择性培养分析了25个不同类型和地理来源的土壤样本,随后进行表型测试以及在大肠杆菌中MBL编码基因的表达,并对产生MBL的菌株进行全基因组测序。在来自13个土壤样本的29株细菌分离物中检测到碳青霉烯酶活性,从而在推定的玫瑰色 Pedobacter(PEDO-1)、北方 Pedobacter(PEDO-2)、庆熙 Pedobacter(PEDO-3)、鱼金色杆菌(CPS-1)、嗜岩石单胞菌(ESP-1)、眼马赛菌(MSI-1)和鞘氨醇单胞菌属(SPG-1)中鉴定出7种新的MBLs。碳青霉烯酶的产生可能是金色杆菌属和嗜岩石单胞菌属的固有特征,因为在这些属内不同物种的参考菌株中都有发生。与临床细菌中描述的MBLs的氨基酸同一性在40%至69%之间。新MBLs的显著特征包括编码基因的前噬菌体整合(PEDO-1)、MBL结构和催化关键位置的异常氨基酸残基(CPS-1)以及与推定的OXAβ-内酰胺酶重叠(MSI-1)。PEDO-1、CPS-1和ESP-1在大肠杆菌中的异源表达显著增加了氨苄西林、头孢他啶、头孢泊肟、头孢西丁和美罗培南的最低抑菌浓度(MICs)。我们的研究表明,MBL产生菌在土壤中广泛存在,包括四个以前未知会产生MBLs的属。这些细菌产生的MBLs与临床样本中鉴定的MBLs关系较远,但如果被病原菌获得,则构成具有临床相关性的耐药决定因素。

相似文献

1
The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance.
Antimicrob Agents Chemother. 2015 Oct 19;60(1):151-60. doi: 10.1128/AAC.01424-15. Print 2016 Jan.
2
Expanding the Repertoire of Carbapenem-Hydrolyzing Metallo-ß-Lactamases by Functional Metagenomic Analysis of Soil Microbiota.
Front Microbiol. 2016 Dec 26;7:1985. doi: 10.3389/fmicb.2016.01985. eCollection 2016.
3
Biochemical Characterization of CPS-1, a Subclass B3 Metallo-β-Lactamase from a Chryseobacterium piscium Soil Isolate.
Antimicrob Agents Chemother. 2015 Dec 14;60(3):1869-73. doi: 10.1128/AAC.01924-15.
4
OXA-235, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii.
Antimicrob Agents Chemother. 2013 May;57(5):2121-6. doi: 10.1128/AAC.02413-12. Epub 2013 Feb 25.
5
Heterogeneity of metallo-beta-lactamases in clinical isolates of Chryseobacterium meningosepticum from Hangzhou, China.
J Antimicrob Chemother. 2006 Apr;57(4):750-2. doi: 10.1093/jac/dkl019. Epub 2006 Feb 14.
7
Cyclic Boronates Inhibit All Classes of β-Lactamases.
Antimicrob Agents Chemother. 2017 Mar 24;61(4). doi: 10.1128/AAC.02260-16. Print 2017 Apr.
8
Molecular characterization of a carbapenem-hydrolyzing beta-lactamase from Chryseobacterium (Flavobacterium) indologenes.
FEMS Microbiol Lett. 1999 Feb 15;171(2):127-32. doi: 10.1111/j.1574-6968.1999.tb13422.x.
9
Characterization of CIA-1, an Ambler class A extended-spectrum β-lactamase from Chryseobacterium indologenes.
Antimicrob Agents Chemother. 2012 Jan;56(1):588-90. doi: 10.1128/AAC.05165-11. Epub 2011 Nov 14.

引用本文的文献

1
Hospital and municipal wastewater as a source of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in the environment: a review.
Environ Sci Pollut Res Int. 2024 Aug;31(36):48813-48838. doi: 10.1007/s11356-024-34436-x. Epub 2024 Jul 25.
3
Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues.
Antibiotics (Basel). 2023 Dec 16;12(12):1746. doi: 10.3390/antibiotics12121746.
4
6
EBR-5, a Novel Variant of Metallo-β-Lactamase EBR from Multidrug-Resistant Empedobacter stercoris.
Microbiol Spectr. 2023 Jan 31;11(2):e0003923. doi: 10.1128/spectrum.00039-23.
7
Carbapenem Resistance among Marine Bacteria-An Emerging Threat to the Global Health Sector.
Microorganisms. 2021 Oct 14;9(10):2147. doi: 10.3390/microorganisms9102147.
8
Genomic Insights into Drug Resistance Determinants in , A Rare Opportunistic Pathogen.
Microorganisms. 2021 Aug 15;9(8):1741. doi: 10.3390/microorganisms9081741.
9
Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.
Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.

本文引用的文献

1
What is a resistance gene? Ranking risk in resistomes.
Nat Rev Microbiol. 2015 Feb;13(2):116-23. doi: 10.1038/nrmicro3399. Epub 2014 Dec 15.
2
Bacteriophages as vehicles for antibiotic resistance genes in the environment.
PLoS Pathog. 2014 Jul 31;10(7):e1004219. doi: 10.1371/journal.ppat.1004219. eCollection 2014 Jul.
4
Strategy for rapid detection of carbapenemase-producing Enterobacteriaceae.
Antimicrob Agents Chemother. 2014;58(4):2441-5. doi: 10.1128/AAC.01239-13. Epub 2014 Jan 27.
5
ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes.
Antimicrob Agents Chemother. 2014;58(1):212-20. doi: 10.1128/AAC.01310-13. Epub 2013 Oct 21.
6
Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance.
Environ Health Perspect. 2013 Sep;121(9):993-1001. doi: 10.1289/ehp.1206316. Epub 2013 Jul 9.
7
Breaking and joining single-stranded DNA: the HUH endonuclease superfamily.
Nat Rev Microbiol. 2013 Aug;11(8):525-38. doi: 10.1038/nrmicro3067. Epub 2013 Jul 8.
8
FIM-1, a new acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy.
Antimicrob Agents Chemother. 2013 Jan;57(1):410-6. doi: 10.1128/AAC.01953-12. Epub 2012 Oct 31.
9
Probing the role of Met221 in the unusual metallo-β-lactamase GOB-18.
Inorg Chem. 2012 Nov 19;51(22):12419-25. doi: 10.1021/ic301801h. Epub 2012 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验