Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Zoology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.
PLoS One. 2020 Sep 22;15(9):e0238950. doi: 10.1371/journal.pone.0238950. eCollection 2020.
Improved genome engineering methods that enable automation of large and precise edits are essential for systematic investigations of genome function. We adapted peel-1 negative selection to an optimized Dual-Marker Selection (DMS) cassette protocol for CRISPR-Cas9 genome engineering in Caenorhabditis elegans and observed robust increases in multiple measures of efficiency that were consistent across injectors and four genomic loci. The use of Peel-1-DMS selection killed animals harboring transgenes as extrachromosomal arrays and spared genome-edited integrants, often circumventing the need for visual screening to identify genome-edited animals. To demonstrate the applicability of the approach, we created deletion alleles in the putative proteasomal subunit pbs-1 and the uncharacterized gene K04F10.3 and used machine vision to automatically characterize their phenotypic profiles, revealing homozygous essential and heterozygous behavioral phenotypes. These results provide a robust and scalable approach to rapidly generate and phenotype genome-edited animals without the need for screening or scoring by eye.
改良的基因组编辑方法可以实现大规模和精确编辑的自动化,对于系统研究基因组功能至关重要。我们将 peel-1 负选择方法应用于优化的 Dual-Marker Selection (DMS) 盒式方案,用于在秀丽隐杆线虫中的 CRISPR-Cas9 基因组工程,观察到多种效率指标的显著提高,这些提高在不同的注入器和四个基因组位点上是一致的。Peel-1-DMS 选择的使用杀死了携带转座子的动物作为染色体外阵列,并保留了基因组编辑的整合子,通常避免了需要进行视觉筛选来识别基因组编辑的动物。为了证明该方法的适用性,我们在假定的蛋白酶体亚基 pbs-1 和未表征的基因 K04F10.3 中创建了缺失等位基因,并使用机器视觉自动分析它们的表型特征,揭示了纯合必需和杂合行为表型。这些结果提供了一种强大且可扩展的方法,可快速生成和表型分析基因组编辑动物,而无需通过眼睛进行筛选或评分。