Suppr超能文献

利用高效 sgRNA 和易于识别的表型在 中进行可靠的 CRISPR/Cas9 基因组工程。

Reliable CRISPR/Cas9 Genome Engineering in Using a Single Efficient sgRNA and an Easily Recognizable Phenotype.

机构信息

Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France.

Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France

出版信息

G3 (Bethesda). 2017 May 5;7(5):1429-1437. doi: 10.1534/g3.117.040824.

Abstract

CRISPR/Cas9 genome engineering strategies allow the directed modification of the genome to introduce point mutations, generate knock-out mutants, and insert coding sequences for epitope or fluorescent tags. Three practical aspects, however, complicate such experiments. First, the efficiency and specificity of single-guide RNAs (sgRNA) cannot be reliably predicted. Second, the detection of animals carrying genome edits can be challenging in the absence of clearly visible or selectable phenotypes. Third, the sgRNA target site must be inactivated after editing to avoid further double-strand break events. We describe here a strategy that addresses these complications by transplanting the protospacer of a highly efficient sgRNA into a gene of interest to render it amenable to genome engineering. This sgRNA targeting the gene generates genome edits at comparatively high frequency. We demonstrate that the transplanted protospacer is cleaved at the same time as the gene. Our strategy generates scarless genome edits because it no longer requires the introduction of mutations in endogenous sgRNA target sites. Modified progeny can be easily identified in the F1 generation, which drastically reduces the number of animals to be tested by PCR or phenotypic analysis. Using this strategy, we reliably generated precise deletion mutants, transcriptional reporters, and translational fusions with epitope tags and fluorescent reporter genes. In particular, we report here the first use of the new red fluorescent protein mScarlet in a multicellular organism. wrmScarlet, a -optimized version, dramatically surpassed TagRFP-T by showing an eightfold increase in fluorescence in a direct comparison.

摘要

CRISPR/Cas9 基因组工程策略允许定向修饰基因组,引入点突变,产生敲除突变体,并插入编码表位或荧光标签的序列。然而,有三个实际问题使这些实验变得复杂。首先,单指导 RNA(sgRNA)的效率和特异性不能可靠预测。其次,在缺乏明显可见或可选择表型的情况下,检测携带基因组编辑的动物具有挑战性。第三,sgRNA 靶位点在编辑后必须失活,以避免进一步的双链断裂事件。我们在这里描述了一种策略,通过将高效 sgRNA 的原间隔区移植到感兴趣的基因中,来解决这些问题,从而使其能够进行基因组工程。这种靶向 基因的 sgRNA 以相对较高的频率产生基因组编辑。我们证明,移植的原间隔区与 基因同时被切割。我们的策略产生无疤痕的基因组编辑,因为它不再需要在内源性 sgRNA 靶位点引入突变。可以在 F1 代中轻松识别修饰的后代,这大大减少了通过 PCR 或表型分析进行测试的动物数量。使用这种策略,我们可靠地生成了精确的缺失突变体、转录报告基因以及与表位标签和荧光报告基因的翻译融合。特别是,我们在这里报告了新的红色荧光蛋白 mScarlet 在多细胞生物中的首次使用。wrmScarlet 是一种 -优化的版本,与 TagRFP-T 的直接比较显示荧光强度增加了八倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/5427500/798ac0f9937f/1429f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验