Suppr超能文献

基于患者和提供者异质性的急性护理决策的随机模型。

A stochastic model of acute-care decisions based on patient and provider heterogeneity.

机构信息

Value Institute, Christiana Care Health System, John H. Ammon Medical Education Center, 4755 Ogletown-Stanton Road, Newark, DE, 19718, USA.

Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Campus Box 7906, Raleigh, NC, 27695-7906, USA.

出版信息

Health Care Manag Sci. 2017 Jun;20(2):187-206. doi: 10.1007/s10729-015-9347-x. Epub 2015 Oct 21.

Abstract

The primary cause of preventable death in many hospitals is the failure to recognize and/or rescue patients from acute physiologic deterioration (APD). APD affects all hospitalized patients, potentially causing cardiac arrest and death. Identifying APD is difficult, and response timing is critical - delays in response represent a significant and modifiable patient safety issue. Hospitals have instituted rapid response systems or teams (RRT) to provide timely critical care for APD, with thresholds that trigger the involvement of critical care expertise. The National Early Warning Score (NEWS) was developed to define these thresholds. However, current triggers are inconsistent and ignore patient-specific factors. Further, acute care is delivered by providers with different clinical experience, resulting in quality-of-care variation. This article documents a semi-Markov decision process model of APD that incorporates patient and provider heterogeneity. The model allows for stochastically changing health states, while determining patient subpopulation-specific RRT-activation thresholds. The objective function minimizes the total time associated with patient deterioration and stabilization; and the relative values of nursing and RRT times can be modified. A case study from January 2011 to December 2012 identified six subpopulations. RRT activation was optimal for patients in "slightly concerning" health states (NEWS > 0) for all subpopulations, except surgical patients with low risk of deterioration for whom RRT was activated in "concerning" states (NEWS > 4). Clustering methods identified provider clusters considering RRT-activation preferences and estimation of stabilization-related resource needs. Providers with conservative resource estimates preferred waiting over activating RRT. This study provides simple practical rules for personalized acute care delivery.

摘要

在许多医院,可预防死亡的主要原因是未能识别和/或抢救出现急性生理恶化 (APD) 的患者。APD 影响所有住院患者,可能导致心脏骤停和死亡。识别 APD 具有挑战性,响应时间至关重要 - 响应延迟是一个重大且可纠正的患者安全问题。医院已经建立了快速反应系统或团队 (RRT) ,为 APD 提供及时的重症护理,其触发因素涉及重症护理专业知识。国家早期预警评分 (NEWS) 的开发旨在定义这些触发因素。然而,目前的触发因素不一致,忽略了患者特定的因素。此外,急性护理由具有不同临床经验的提供者提供,导致护理质量存在差异。本文记录了一个包含患者和提供者异质性的 APD 半马尔可夫决策过程模型。该模型允许健康状态随机变化,同时确定患者亚群特定的 RRT 激活阈值。目标函数最小化与患者恶化和稳定相关的总时间;并且可以修改护理和 RRT 时间的相对值。2011 年 1 月至 2012 年 12 月的一项案例研究确定了六个亚群。对于所有亚群,除了风险较低的外科患者在“令人担忧”状态 (NEWS > 4) 下激活 RRT 外,处于“轻度令人担忧”健康状态 (NEWS > 0) 的患者的 RRT 激活是最佳的。聚类方法考虑了 RRT 激活偏好和与稳定相关的资源需求估计,确定了提供者集群。具有保守资源估计的提供者更倾向于等待而不是激活 RRT。这项研究为个性化急性护理提供了简单实用的规则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e83a/5415592/584471dd5fe5/10729_2015_9347_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验