Suppr超能文献

代谢稳态中的微小RNA相互作用组

The miRNA Interactome in Metabolic Homeostasis.

作者信息

Hartig Sean M, Hamilton Mark P, Bader David A, McGuire Sean E

机构信息

Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.

Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Trends Endocrinol Metab. 2015 Dec;26(12):733-745. doi: 10.1016/j.tem.2015.09.006. Epub 2015 Oct 20.

Abstract

Global expression analyses demonstrate that alterations in miRNA levels correlate with various metabolic diseases. miRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. Here we highlight novel sequencing technologies used to comprehensively define the target spectrum of miRNAs in metabolic disease that complement recent literature reporting physiologic roles for miRNAs in the regulation of glucose and lipid metabolism in peripheral tissues of animal models of metabolic dysfunction. These emerging technologies help decipher the complexity of the miRNA interactome and enrich our understanding of how miRNAs mediate physiologic effects by targeting a spectrum of gene transcripts simultaneously. miRNA-based therapeutics emerge as a viable strategy for treating metabolic diseases.

摘要

全局表达分析表明,miRNA水平的改变与多种代谢性疾病相关。miRNA调节核心代谢途径,因此在维持机体能量平衡和代谢稳态中发挥着至关重要的作用。在此,我们重点介绍了用于全面定义代谢性疾病中miRNA靶标谱的新型测序技术,这些技术补充了最近的文献报道,即miRNA在代谢功能障碍动物模型的外周组织中调节葡萄糖和脂质代谢方面的生理作用。这些新兴技术有助于破解miRNA相互作用组的复杂性,并丰富我们对miRNA如何通过同时靶向一系列基因转录本来介导生理效应的理解。基于miRNA的疗法成为治疗代谢性疾病的一种可行策略。

相似文献

1
The miRNA Interactome in Metabolic Homeostasis.
Trends Endocrinol Metab. 2015 Dec;26(12):733-745. doi: 10.1016/j.tem.2015.09.006. Epub 2015 Oct 20.
2
Contributions of microRNAs to Peripheral Insulin Sensitivity.
Endocrinology. 2022 Feb 1;163(2). doi: 10.1210/endocr/bqab250.
3
miRNA and cholesterol homeostasis.
Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2041-2046. doi: 10.1016/j.bbalip.2016.01.005. Epub 2016 Jan 15.
4
MicroRNAs in metabolic disease.
Arterioscler Thromb Vasc Biol. 2013 Feb;33(2):178-85. doi: 10.1161/ATVBAHA.112.300144.
5
miRNA regulation of white and brown adipose tissue differentiation and function.
Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2104-2110. doi: 10.1016/j.bbalip.2016.02.010. Epub 2016 Feb 16.
7
Circulating miRNA profiling to identify biomarkers of dysmetabolism.
Biomark Med. 2012 Dec;6(6):729-42. doi: 10.2217/bmm.12.91.
8
Key regulatory miRNAs in lipid homeostasis: Implications for cardiometabolic diseases and development of novel therapeutics.
Drug Discov Today. 2022 Aug;27(8):2170-2180. doi: 10.1016/j.drudis.2022.05.003. Epub 2022 May 10.
9
The Emerging Role of MitomiRs in the Pathophysiology of Human Disease.
Adv Exp Med Biol. 2015;888:123-54. doi: 10.1007/978-3-319-22671-2_8.
10
Deep sequencing of small RNA repertoires in mice reveals metabolic disorders-associated hepatic miRNAs.
PLoS One. 2013 Nov 15;8(11):e80774. doi: 10.1371/journal.pone.0080774. eCollection 2013.

引用本文的文献

1
Acetyl-11-keto-β-boswellic acid alleviates hepatic metabolic dysfunction by inhibiting MGLL activity.
J Lipid Res. 2025 May;66(5):100812. doi: 10.1016/j.jlr.2025.100812. Epub 2025 Apr 17.
2
miRNAs in HCC, pathogenesis, and targets.
Hepatology. 2024 Nov 29. doi: 10.1097/HEP.0000000000001177.
3
Comparative analysis of the exosomal contents of DF-1 cells infected by ALV-J.
Vet Med (Praha). 2022 Feb 15;67(2):87-98. doi: 10.17221/141/2020-VETMED. eCollection 2022 Feb.
4
MicroRNA-206 as a potential cholesterol-lowering drug is superior to statins in mice.
J Lipid Res. 2024 Jul;65(7):100576. doi: 10.1016/j.jlr.2024.100576. Epub 2024 Jun 10.
6
Metabolic memory: mechanisms and diseases.
Signal Transduct Target Ther. 2024 Feb 28;9(1):38. doi: 10.1038/s41392-024-01755-x.
7
Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs.
Life Sci Alliance. 2024 Feb 26;7(5). doi: 10.26508/lsa.202302180. Print 2024 May.
8
MiR-582 Down-Regulates Lissencephaly-1 () via P-Akt and MMP-2 to Inhibit Cholangiocarcinoma Cell Proliferation and Invasion.
Iran J Biotechnol. 2022 Oct 1;20(4):e3136. doi: 10.30498/ijb.2022.301092.3136. eCollection 2022 Oct.

本文引用的文献

1
miRWalk2.0: a comprehensive atlas of microRNA-target interactions.
Nat Methods. 2015 Aug;12(8):697. doi: 10.1038/nmeth.3485.
2
Towards a molecular understanding of microRNA-mediated gene silencing.
Nat Rev Genet. 2015 Jul;16(7):421-33. doi: 10.1038/nrg3965. Epub 2015 Jun 16.
3
DICER Inactivation Identifies Pancreatic β-Cell "Disallowed" Genes Targeted by MicroRNAs.
Mol Endocrinol. 2015 Jul;29(7):1067-79. doi: 10.1210/me.2015-1059. Epub 2015 Jun 3.
4
The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes.
Nat Med. 2015 Jun;21(6):619-27. doi: 10.1038/nm.3862. Epub 2015 May 18.
5
MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids.
J Clin Invest. 2015 Jun;125(6):2497-509. doi: 10.1172/JCI75438. Epub 2015 May 11.
6
Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor.
Cell Rep. 2015 May 12;11(6):902-909. doi: 10.1016/j.celrep.2015.04.016. Epub 2015 Apr 30.
7
Hepatitis C virus RNA functionally sequesters miR-122.
Cell. 2015 Mar 12;160(6):1099-110. doi: 10.1016/j.cell.2015.02.025.
8
The cell biology of fat expansion.
J Cell Biol. 2015 Mar 2;208(5):501-12. doi: 10.1083/jcb.201409063.
9
MicroRNA regulatory networks in human adipose tissue and obesity.
Nat Rev Endocrinol. 2015 May;11(5):276-88. doi: 10.1038/nrendo.2015.25. Epub 2015 Mar 3.
10
miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140.
Diabetes. 2015 Jun;64(6):2056-68. doi: 10.2337/db14-1117. Epub 2015 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验