Mankoff David A, Pryma Daniel A
Division of Nuclear Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, 116 Donner Building, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA.
EJNMMI Phys. 2014 Dec;1(1):5. doi: 10.1186/2197-7364-1-5. Epub 2014 May 1.
Advances in Nuclear Medicine physics enabled the specialty of Nuclear Medicine and directed research in other aspects of radiotracer imaging, ultimately leading to Nuclear Medicine's emergence as an important component of current medical practice.
Nuclear Medicine's unique ability to characterize in vivo biology without perturbing it will assure its ongoing role in a practice of medicine increasingly driven by molecular biology. However, in the future, it is likely that advances in molecular biology and radiopharmaceutical chemistry will increasingly direct future developments in Nuclear Medicine physics, rather than relying on physics as the primary driver of advances in Nuclear Medicine. Working hand-in-hand with clinicians, chemists, and biologists, Nuclear Medicine physicists can greatly enhance the specialty by creating more sensitive and robust imaging devices, by enabling more facile and sophisticated image analysis to yield quantitative measures of regional in vivo biology, and by combining the strengths of radiotracer imaging with other imaging modalities in hybrid devices, with the overall goal to enhance Nuclear Medicine's ability to characterize regional in vivo biology.
核医学物理学的进展推动了核医学专业的发展,并指导了放射性示踪剂成像其他方面的研究,最终使核医学成为当前医学实践的重要组成部分。
核医学在不干扰体内生物学的情况下对其进行表征的独特能力,将确保其在日益由分子生物学驱动的医学实践中持续发挥作用。然而,未来分子生物学和放射性药物化学的进展可能会越来越多地指导核医学物理学的未来发展,而不是依赖物理学作为核医学进展的主要驱动力。核医学物理学家与临床医生、化学家和生物学家携手合作,可以通过制造更灵敏、更强大的成像设备,通过实现更简便、更复杂的图像分析以产生体内区域生物学的定量测量,以及通过在混合设备中将放射性示踪剂成像的优势与其他成像方式相结合,来极大地提升该专业,总体目标是增强核医学表征体内区域生物学的能力。