Hope Thomas A, Verdin Emily F, Bergsland Emily K, Ohliger Michael A, Corvera Carlos U, Nakakura Eric K
Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
Department of Radiology, San Francisco VA Medical Center, San Francisco, CA, USA.
EJNMMI Phys. 2015 Dec;2(1):21. doi: 10.1186/s40658-015-0125-0. Epub 2015 Sep 18.
The purpose of this study was to evaluate the utility of bellows-based respiratory compensation and navigated hepatobiliary phase imaging to correct for respiratory motion in the setting of dedicated liver PET/MRI.
Institutional review board approval and informed consent were obtained. Six patients with metastatic neuroendocrine tumor were imaged using Ga-68 DOTA-TOC PET/MRI. Whole body imaging and a dedicated 15-min liver PET acquisition was performed, in addition to navigated and breath-held hepatobiliary phase (HBP) MRI. Liver PET data was reconstructed three ways: the entire data set (liver PET), gated using respiratory bellows (RC-liver PET), and a non-gated data set reconstructed using the same amount of data used in the RC-liver PET (shortened liver PET). Liver lesions were evaluated using SUVmax, SUVpeak, SUVmean, and Volisocontour. Additionally, the displacement of each lesion between the RC-liver PET images and the navigated and breath-held HBP images was calculated.
Respiratory compensation resulted in a 43 % increase in SUVs compared to ungated data (liver vs RC-liver PET SUVmax 26.0 vs 37.3, p < 0.001) and a 25 % increase compared to a non-gated reconstruction using the same amount of data (RC-liver vs shortened liver PET SUVmax 26.0 vs 32.6, p < 0.001). Lesion displacement was minimized using navigated HBP MRI (1.3 ± 1.0 mm) compared to breath-held HBP MRI (23.3 ± 1.0 mm).
Respiratory bellows can provide accurate respiratory compensation when imaging liver lesions using PET/MRI, and results in increased SUVs due to a combination of increased image noise and reduced respiratory blurring. Additionally, navigated HBP MRI accurately aligns with respiratory compensated PET data.
本研究的目的是评估基于波纹管的呼吸补偿和导航肝胆期成像在专用肝脏PET/MRI中校正呼吸运动的效用。
获得机构审查委员会批准并取得知情同意。对6例转移性神经内分泌肿瘤患者进行了Ga-68 DOTA-TOC PET/MRI成像。除了导航和屏气肝胆期(HBP)MRI外,还进行了全身成像和15分钟的专用肝脏PET采集。肝脏PET数据通过三种方式重建:整个数据集(肝脏PET)、使用呼吸波纹管进行门控(RC-肝脏PET)以及使用与RC-肝脏PET相同数量的数据重建的非门控数据集(缩短肝脏PET)。使用SUVmax、SUVpeak、SUVmean和Volisocontour评估肝脏病变。此外,计算了RC-肝脏PET图像与导航和屏气HBP图像之间每个病变的位移。
与非门控数据相比,呼吸补偿使SUV增加了43%(肝脏PET与RC-肝脏PET的SUVmax分别为26.0和37.3,p<0.001),与使用相同数量数据的非门控重建相比增加了25%(RC-肝脏PET与缩短肝脏PET的SUVmax分别为26.0和32.6,p<0.001)。与屏气HBP MRI(23.3±1.0 mm)相比,使用导航HBP MRI时病变位移最小(1.3±1.0 mm)。
在使用PET/MRI对肝脏病变进行成像时,呼吸波纹管可提供准确的呼吸补偿,并由于图像噪声增加和呼吸模糊减少的综合作用而导致SUV增加。此外,导航HBP MRI与呼吸补偿后的PET数据精确对齐。