Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland.
Nanoscale. 2016 Jan 14;8(2):796-803. doi: 10.1039/c5nr04942c.
Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol(-1) and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.
质子耦合电子转移(PCET)反应涉及质子和电子的转移,在许多化学和生物过程中起着重要作用。在这里,我们描述了一种新的现象,等离子体增强的 PCET,这是使用 SiO2 涂层的 Ag 纳米粒子来实现的,这些 Ag 纳米粒子功能化了没食子酸(GA),这是一种可以进行 PCET 的天然抗氧化分子。这些 GA 功能化的纳米粒子在近红外波长处表现出增强的等离子体响应,这是由于 GA 分子引起的颗粒聚集。近红外激光照射在 SiO2 涂层的 Ag 纳米粒子上诱导出强烈的局部热点,这一点可以通过表面增强拉曼散射(SERS)得到证明。这导致等离子体能量转移到接枝的 GA 分子上,使 GA-OH 键的离解焓降低至少 2 kcal mol(-1),从而促进 PCET。纳米颗粒驱动的 PCET 增强将纳米等离子体学和电子/质子迁移这两个迄今为止没有关联的研究领域结合在一起,对基于界面电子/质子转移的应用有重大影响。