Suppr超能文献

基于非晶硅氮氢(a-SiNx:H)的具有可调硅悬键传导路径的超低功耗电阻式随机存取存储器。

a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths.

作者信息

Jiang Xiaofan, Ma Zhongyuan, Xu Jun, Chen Kunji, Xu Ling, Li Wei, Huang Xinfan, Feng Duan

机构信息

School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.

Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

出版信息

Sci Rep. 2015 Oct 28;5:15762. doi: 10.1038/srep15762.

Abstract

The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p(+)-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I-V) curves combined with the temperature dependence of the I-V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole-Frenkel (P-F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM.

摘要

实现超低功耗的硅基电阻开关存储技术将是下一代非易失性存储器发展中的一个里程碑。在此,我们表明,通过调整硅悬键传导路径,可以实现基于Al/a-SiNx:H/p(+)-Si结构的高性能、超低功耗电阻式随机存取存储器(RRAM)。我们揭示了a-SiNx:H薄膜中硅悬键与N/Si比x之间的内在关系,这确保了通过增加x的值可将编程电流降低至小于1 μA。理论计算的电流-电压(I-V)曲线与I-V特性的温度依赖性相结合,证实对于低电阻状态(LRS),硅悬键传导路径遵循陷阱辅助隧穿模型。在高电阻状态(HRS)下,传导主要由跳跃或普尔-弗伦克尔(P-F)过程主导。我们在a-SiNx:H层中引入氢,为控制硅悬键传导路径提供了一种新方法,从而为超低功耗硅基RRAM开辟了一个研究领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e13/4623785/ead234f2af56/srep15762-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验