Granzin Joachim, Stadler Andreas, Cousin Anneliese, Schlesinger Ramona, Batra-Safferling Renu
Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany.
Jülich Centre for Neutron Science (JCNS-1) &Institute for Complex Systems (ICS-1), Forschungszentrum Jülich, 52425, Jülich, Germany.
Sci Rep. 2015 Oct 29;5:15808. doi: 10.1038/srep15808.
Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail 'activating' arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the 'phosphosensor' leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361-404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.
抑制蛋白的结合机制需要视紫红质受体蛋白的光激活和磷酸化,其中受体结合的磷酸基团导致长C末端“激活”抑制蛋白的位移。精氨酸175突变为谷氨酸(R175E),这是极性核心中的一个中心残基,之前被预测为“磷酸传感器”,会导致一种预激活的抑制蛋白,它能够通过与未磷酸化的、光激活的视紫红质结合来终止光转导。在这里,我们报告了R175E突变体抑制蛋白的首个晶体结构,分辨率为2.7 Å,与全长抑制蛋白结构中报道的基础状态相比,显示出显著差异。这些差异包括极性核心中氢键网络的破坏,以及三元相互作用,包括受体结合指环和C末端(残基361 - 404)中几个残基的无序化。此外,R175E结构显示氨基和羧基末端结构域相对于彼此旋转了7.5°。与生化数据一致,我们的结构表明R29在C末端释放的初始激活步骤中起重要作用。基础抑制蛋白和R175E突变体晶体结构的比较为抑制蛋白激活机制提供了见解,其中受体的结合可能诱导了类似于R175E中的结构变化。