Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581, Japan.
Rep Prog Phys. 2015 Dec;78(12):124501. doi: 10.1088/0034-4885/78/12/124501. Epub 2015 Oct 29.
Spin Hall effect and its inverse provide essential means to convert charge to spin currents and vice versa, which serve as a primary function for spintronic phenomena such as the spin-torque ferromagnetic resonance and the spin Seebeck effect. These effects can oscillate magnetization or detect a thermally generated spin splitting in the chemical potential. Importantly this conversion process occurs via the spin-orbit interaction, and requires neither magnetic materials nor external magnetic fields. However, the spin Hall angle, i.e. the conversion yield between the charge and spin currents, depends severely on the experimental methods. Here we discuss the spin Hall angle and the spin diffusion length for a variety of materials including pure metals such as Pt and Ta, alloys and oxides determined by the spin absorption method in a lateral spin valve structure.
自旋霍尔效应及其逆效应为电流自旋流的相互转换提供了重要手段,这一效应是自旋电子学现象(如自旋扭矩磁共振和自旋塞贝克效应)的主要功能。这些效应可以使磁化强度振荡或探测化学势中热产生的自旋劈裂。重要的是,这种转换过程是通过自旋轨道相互作用发生的,既不需要磁性材料也不需要外加磁场。然而,自旋霍尔角,即电荷和自旋电流之间的转换效率,严重依赖于实验方法。在这里,我们讨论了通过横向自旋阀结构中的自旋吸收法确定的各种材料(包括纯金属如 Pt 和 Ta、合金和氧化物)的自旋霍尔角和自旋扩散长度。