Batista Graziela Ribeiro, Kamozaki Maria Beatriz Beber, Gutierrez Natália Cortez, Caneppele Taciana Marco Ferraz, Rocha Gomes Torres Carlos
J Adhes Dent. 2015 Aug;17(5):421-6. doi: 10.3290/j.jad.a35013.
To evaluate the influence of different surface treatments on roughness and bond strength of composite repairs.
120 truncated conical specimens were prepared with composite Grandio SO (VOCO) and submitted to 5000 thermal cycles. Specimens were divided into 12 groups (n = 10) regarding the surface treatments: negative control (NC), without treatment; medium-grit diamond bur (MGD); coarse-grit diamond bur (CGD); conventional carbide bur (ConC); crosscut carbide bur (CutC); chemical vapor deposition diamond bur (CVD); sandblasting with aluminum oxide (AlO); Er:YAG laser 200 mJ/10 Hz (Er200); Er:YAG laser 60 mJ/10 Hz (Er50); Nd:YAG laser 120 mJ/15 Hz (Nd120); Nd:YAG laser 60 mJ/ 15Hz (Nd60); air abrasion with 110-μm silica modified aluminum oxide (Rocatec Plus-3M) (SIL). After the surface treatments, the surface roughness (Ra) was measured using a profilometer, and then the adhesive system Admira Bond (VOCO) was applied. Another truncated conical restoration was built up with the same composite over the bonded area of each specimen. In order to evaluate the cohesive strength, double-cone specimens were made and considered as a control group (CoheC). The specimens were submitted to tensile bond strength testing and the obtained data (MPa) were evaluated by one-way ANOVA, Tukey's and correlation tests.
ANOVA showed significant differences among experimental groups for roughness and adhesive strength (p < 0.00). The roughness values (Ra) were: NC (0.21 ± 0.19)(c); ConC (0.30 ± 0.08)(c); CutC (0.50 ± 0.22)(cd); CVD (0.74 ± 0.14)(bd); MGD (0.89 ± 0.39)(ab); Er50 (0.89 ± 0.14)(ab); AlO (0.90 ± 0.07)(ab); Nd60 (0.94 ± 0.33ab; SIL (0.98 ± 0.07)(ab); Nd120 (1.10 ± 0.19)(a); CGD (1.10 ± 0.32)(a); Er200 (1.12 ± 0.21)(a). The results of the tensile bond strength test in MPa were: CGD (11.58 ± 3.03)(a); MGD (12.66 ± 3.82)(ab); NC (13.51 ± 3.95(ab); Nd120 (14.11 ± 5.95)(ab); ConC (14.73 ± 6.12)(ab); Er200 (15.51 ± 1.45)(abc); CVD (15.61 ± 5.00(abc); Er50 (16.44 ± 2.75) (abc); CutC (16.79 ± 2.98)(abc); Nd60 (17.72 ± 2.45)(abcd); AlO (18.33 ± 3.19)(bcd); SIL (21.13 ± 4.48(cd); CoheC (23.50 ± 5.81)(d). The groups followed by the same letters were not statistically significantly different (Tukey's test). No correlation was found between bond strength and roughness (r = 0.007).
Air abrasion with silica coating (Rocatec) was the only method which resulted in significantly higher bond strength in relation to the negative control group. The increase in laser energy produced a rougher surface, but reduced the bond strength.
评估不同表面处理对复合树脂修复体粗糙度和粘结强度的影响。
用复合树脂Grandio SO(VOCO)制备120个截头圆锥体标本,并进行5000次热循环。根据表面处理方式将标本分为12组(n = 10):阴性对照组(NC),未处理;中粒度金刚石车针(MGD);粗粒度金刚石车针(CGD);传统硬质合金车针(ConC);交叉切割硬质合金车针(CutC);化学气相沉积金刚石车针(CVD);用氧化铝喷砂(AlO);Er:YAG激光200 mJ/10 Hz(Er200);Er:YAG激光60 mJ/10 Hz(Er50);Nd:YAG激光120 mJ/15 Hz(Nd120);Nd:YAG激光60 mJ/15Hz(Nd60);用110-μm二氧化硅改性氧化铝进行空气喷砂(Rocatec Plus-3M)(SIL)。表面处理后,使用轮廓仪测量表面粗糙度(Ra),然后应用粘结系统Admira Bond(VOCO)。在每个标本的粘结区域上用相同的复合树脂构建另一个截头圆锥体修复体。为了评估内聚强度,制作双锥体标本并将其视为对照组(CoheC)。对标本进行拉伸粘结强度测试,并通过单因素方差分析、Tukey检验和相关性检验对获得的数据(MPa)进行评估。
方差分析显示实验组之间在粗糙度和粘结强度方面存在显著差异(p < 0.00)。粗糙度值(Ra)为:NC(0.21±0.19)(c);ConC(0.30±0.08)(c);CutC(0.50±0.22)(cd);CVD(0.74±0.14)(bd);MGD(0.89±0.39)(ab);Er50(0.89±0.14)(ab);AlO(0.90±0.07)(ab);Nd60(0.94±0.33)(ab);SIL(0.98±0.07)(ab);Nd120(1.10±0.19)(a);CGD(1.10±0.32)(a);Er200(1.12±0.21)(a)。拉伸粘结强度测试结果(MPa)为:CGD(11.58±3.03)(a);MGD(12.66±3.82)(ab);NC(13.51±3.95)(ab);Nd120(14.11±5.95)(ab);ConC(14.73±6.12)(ab);Er200(15.51±1.45)(abc);CVD(15.61±5.00)(abc);Er50(16.44±2.75)(abc);CutC(16.7