Basu Jayeeta, Siegelbaum Steven A
Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University School of Medicine, New York, New York 10016.
Kavli Institute for Brain Science, Columbia University, New York, New York 10032 Department of Neuroscience, Columbia University, New York, New York 10032 Department of Pharmacology, Columbia University, New York, New York 10032.
Cold Spring Harb Perspect Biol. 2015 Nov 2;7(11):a021733. doi: 10.1101/cshperspect.a021733.
Synaptic plasticity serves as a cellular substrate for information storage in the central nervous system. The entorhinal cortex (EC) and hippocampus are interconnected brain areas supporting basic cognitive functions important for the formation and retrieval of declarative memories. Here, we discuss how information flow in the EC-hippocampal loop is organized through circuit design. We highlight recently identified corticohippocampal and intrahippocampal connections and how these long-range and local microcircuits contribute to learning. This review also describes various forms of activity-dependent mechanisms that change the strength of corticohippocampal synaptic transmission. A key point to emerge from these studies is that patterned activity and interaction of coincident inputs gives rise to associational plasticity and long-term regulation of information flow. Finally, we offer insights about how learning-related synaptic plasticity within the corticohippocampal circuit during sensory experiences may enable adaptive behaviors for encoding spatial, episodic, social, and contextual memories.
突触可塑性作为中枢神经系统中信息存储的细胞基础。内嗅皮层(EC)和海马体是相互连接的脑区,支持对陈述性记忆的形成和提取至关重要的基本认知功能。在此,我们讨论内嗅皮层-海马环路中的信息流是如何通过回路设计进行组织的。我们重点介绍最近发现的皮质-海马连接和海马体内连接,以及这些长程和局部微回路如何促进学习。本综述还描述了改变皮质-海马突触传递强度的各种形式的活动依赖机制。这些研究得出的一个关键点是,模式化活动和同步输入的相互作用会产生联想可塑性和信息流的长期调节。最后,我们深入探讨了在感觉体验期间,皮质-海马回路内与学习相关的突触可塑性如何使编码空间、情景、社会和情境记忆的适应性行为成为可能。