Suppr超能文献

用于3D医学图像超分辨率的非凸非局部塔克分解

Nonconvex Nonlocal Tucker Decomposition for 3D Medical Image Super-Resolution.

作者信息

Jia Huidi, Chen Xi'ai, Han Zhi, Liu Baichen, Wen Tianhui, Tang Yandong

机构信息

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.

Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China.

出版信息

Front Neuroinform. 2022 Apr 25;16:880301. doi: 10.3389/fninf.2022.880301. eCollection 2022.

Abstract

Limited by hardware conditions, imaging devices, transmission efficiency, and other factors, high-resolution (HR) images cannot be obtained directly in clinical settings. It is expected to obtain HR images from low-resolution (LR) images for more detailed information. In this article, we propose a novel super-resolution model for single 3D medical images. In our model, nonlocal low-rank tensor Tucker decomposition is applied to exploit the nonlocal self-similarity prior knowledge of data. Different from the existing methods that use a convex optimization for tensor Tucker decomposition, we use a tensor folded-concave penalty to approximate a nonlocal low-rank tensor. Weighted 3D total variation (TV) is used to maintain the local smoothness across different dimensions. Extensive experiments show that our method outperforms some state-of-the-art (SOTA) methods on different kinds of medical images, including MRI data of the brain and prostate and CT data of the abdominal and dental.

摘要

受硬件条件、成像设备、传输效率等因素限制,在临床环境中无法直接获取高分辨率(HR)图像。期望从低分辨率(LR)图像中获取HR图像以获得更详细的信息。在本文中,我们提出了一种用于单幅三维医学图像的新型超分辨率模型。在我们的模型中,应用非局部低秩张量塔克分解来利用数据的非局部自相似性先验知识。与现有的使用凸优化进行张量塔克分解的方法不同,我们使用张量折叠凹惩罚来近似非局部低秩张量。加权三维全变差(TV)用于保持不同维度之间的局部平滑性。大量实验表明,我们的方法在不同类型的医学图像上优于一些先进的(SOTA)方法,包括脑部和前列腺的MRI数据以及腹部和牙科的CT数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c9d/9083114/e4ce5d26b260/fninf-16-880301-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验