Bonaiuto James J, Bestmann Sven
Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK.
Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK.
Prog Brain Res. 2015;222:75-103. doi: 10.1016/bs.pbr.2015.06.013. Epub 2015 Jul 29.
Despite the success of noninvasive brain stimulation (NIBS), the mechanism of action through which different stimulation techniques interact with information processing in targeted neural circuits largely remains unknown. Applying neurostimulation in silico to computational models with biophysical plausibility provides one route to interrogate the possible mechanisms through which stimulation interacts with neural circuits, and generate predictions about the resultant behavior. Here, we address the recent observation that the physiological and behavioral effects of transcranial direct current stimulation (tDCS) might be nonlinear with regard to stimulation intensity or duration. We simulate neurostimulation in an established, biophysically informed neural network attractor model that generates simple behavioral choices and thus allows for assessing the impact of stimulation on both neural dynamics and behavior. We demonstrate that nonlinear effects of stimulation intensity on the accuracy and decision time of the model can arise from a limit on the integration rate of the network, nonlinear effects of stimulation on neural firing rates before the onset of the stimulus, and the inhibitory effect of hyperpolarizing stimulation on pyramidal neurons. We thus present a detailed modeling treatment of nonlinear tDCS effects during a behavioral task, and provide detailed hypotheses about the neural causes that lead to observed nonlinear behavioral effects during stimulation. This framework can provide a blueprint for future work on the neural and behavioral consequences of NIBS in health and disease.
尽管非侵入性脑刺激(NIBS)取得了成功,但不同刺激技术与目标神经回路中的信息处理相互作用的作用机制在很大程度上仍不清楚。将计算机模拟神经刺激应用于具有生物物理合理性的计算模型,为探究刺激与神经回路相互作用的可能机制以及预测由此产生的行为提供了一条途径。在此,我们探讨最近的一项观察结果,即经颅直流电刺激(tDCS)的生理和行为效应可能在刺激强度或持续时间方面呈非线性。我们在一个既定的、具有生物物理信息的神经网络吸引子模型中模拟神经刺激,该模型产生简单的行为选择,从而能够评估刺激对神经动力学和行为的影响。我们证明,刺激强度对模型准确性和决策时间的非线性效应可能源于网络积分率的限制、刺激开始前对神经放电率的非线性影响以及超极化刺激对锥体神经元的抑制作用。因此,我们对行为任务期间的非线性tDCS效应进行了详细的建模处理,并提供了关于导致刺激期间观察到的非线性行为效应的神经原因的详细假设。该框架可为未来关于NIBS在健康和疾病中的神经和行为后果的研究提供蓝图。