Suppr超能文献

在诊所预测慢性阻塞性肺疾病住院情况:优化慢性呼吸问卷

Forecasting COPD hospitalization in the clinic: optimizing the chronic respiratory questionnaire.

作者信息

Abascal-Bolado Beatriz, Novotny Paul J, Sloan Jeff A, Karpman Craig, Dulohery Megan M, Benzo Roberto P

机构信息

Pulmonary Division, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain.

Department of Cancer Center Statistics, Health Science Research, Mayo Clinic, Rochester, MN, USA.

出版信息

Int J Chron Obstruct Pulmon Dis. 2015 Oct 22;10:2295-301. doi: 10.2147/COPD.S87469. eCollection 2015.

Abstract

PURPOSE

Forecasting hospitalization in patients with COPD has gained significant interest in the field of COPD care. There is a need to find simple tools that can help clinicians to stratify the risk of hospitalization in these patients at the time of care. The perception of quality of life has been reported to be independently associated with hospitalizations, but questionnaires are impractical for daily clinical use. Individual questions from valid questionnaires can have robust predictive abilities, as has been suggested in previous reports, as a way to use patient-reported outcomes to forecast important events like hospitalizations in COPD. Our primary aim was to assess the predictive value of individual questions from the Chronic Respiratory Questionnaire Self-Assessment Survey (CRQ-SAS) on the risk of hospitalization and to develop a clinically relevant and simple algorithm that clinicians can use in routine practice to identify patients with an increased risk of hospitalization.

PATIENTS AND METHODS

A total of 493 patients with COPD prospectively recruited from an outpatient pulmonary clinic completed the CRQ-SAS, demographic information, pulmonary function testing, and clinical outcomes. The cohort had a mean age of 70 years, was 54% male, with forced expiratory volume in 1 second percentage predicted 42.8±16.7, and modified Medical Research Council dyspnea scale score of 2±1.13.

RESULTS

Our analysis validated the original CRQ-SAS domains. Importantly, recursive partitioning analysis identified three CRQ-SAS items regarding fear or panic of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms that were highly predictive of hospitalization. We propose a robust (area under the curve =0.70) but short and easy algorithm for daily clinical care to forecast hospitalizations in patients with COPD.

CONCLUSION

We identified three themes - fear of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms - as important patient-reported outcomes to predict hospitalizations, and propose a short and easy algorithm to forecast hospitalizations in patients with COPD.

摘要

目的

预测慢性阻塞性肺疾病(COPD)患者的住院情况在COPD护理领域已引起广泛关注。需要找到简单的工具,以帮助临床医生在护理时对这些患者的住院风险进行分层。据报道,生活质量感知与住院情况独立相关,但问卷调查在日常临床使用中并不实用。如先前报告所建议的,有效问卷中的个别问题可能具有强大的预测能力,以此作为利用患者报告结局来预测COPD患者住院等重要事件的一种方式。我们的主要目的是评估慢性呼吸问卷自我评估调查(CRQ-SAS)中的个别问题对住院风险的预测价值,并开发一种临床相关且简单的算法,供临床医生在日常实践中用于识别住院风险增加的患者。

患者与方法

从门诊肺科诊所前瞻性招募的493例COPD患者完成了CRQ-SAS、人口统计学信息、肺功能测试及临床结局评估。该队列的平均年龄为70岁,男性占54%,1秒用力呼气容积占预计值百分比为42.8±16.7,改良医学研究委员会呼吸困难量表评分为2±1.13。

结果

我们的分析验证了原始CRQ-SAS的各个领域。重要的是,递归划分分析确定了CRQ-SAS中关于呼吸困难恐惧或恐慌、日常生活基本活动时的呼吸困难以及抑郁症状的三个项目,这些项目对住院具有高度预测性。我们提出了一种适用于日常临床护理的强大(曲线下面积=0.70)但简短且简便的算法,用于预测COPD患者的住院情况。

结论

我们确定了三个主题——呼吸困难恐惧、日常生活基本活动时的呼吸困难以及抑郁症状——作为预测住院情况的重要患者报告结局,并提出了一种简短且简便的算法来预测COPD患者的住院情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0fc/4622555/8ada94825503/copd-10-2295Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验