Suppr超能文献

细菌 RNA-Seq 数据的计算分析。

Computational analysis of bacterial RNA-Seq data.

机构信息

Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.

出版信息

Nucleic Acids Res. 2013 Aug;41(14):e140. doi: 10.1093/nar/gkt444. Epub 2013 May 28.

Abstract

Recent advances in high-throughput RNA sequencing (RNA-seq) have enabled tremendous leaps forward in our understanding of bacterial transcriptomes. However, computational methods for analysis of bacterial transcriptome data have not kept pace with the large and growing data sets generated by RNA-seq technology. Here, we present new algorithms, specific to bacterial gene structures and transcriptomes, for analysis of RNA-seq data. The algorithms are implemented in an open source software system called Rockhopper that supports various stages of bacterial RNA-seq data analysis, including aligning sequencing reads to a genome, constructing transcriptome maps, quantifying transcript abundance, testing for differential gene expression, determining operon structures and visualizing results. We demonstrate the performance of Rockhopper using 2.1 billion sequenced reads from 75 RNA-seq experiments conducted with Escherichia coli, Neisseria gonorrhoeae, Salmonella enterica, Streptococcus pyogenes and Xenorhabdus nematophila. We find that the transcriptome maps generated by our algorithms are highly accurate when compared with focused experimental data from E. coli and N. gonorrhoeae, and we validate our system's ability to identify novel small RNAs, operons and transcription start sites. Our results suggest that Rockhopper can be used for efficient and accurate analysis of bacterial RNA-seq data, and that it can aid with elucidation of bacterial transcriptomes.

摘要

近年来,高通量 RNA 测序(RNA-seq)技术的发展极大地促进了我们对细菌转录组的理解。然而,用于分析细菌转录组数据的计算方法并没有跟上 RNA-seq 技术所产生的大量且不断增长的数据。在这里,我们提出了新的算法,这些算法针对细菌基因结构和转录组进行了优化,用于分析 RNA-seq 数据。这些算法在一个名为 Rockhopper 的开源软件系统中实现,该系统支持细菌 RNA-seq 数据分析的各个阶段,包括将测序读取与基因组进行比对、构建转录组图谱、定量转录物丰度、检测差异基因表达、确定操纵子结构以及可视化结果。我们使用来自 75 个 RNA-seq 实验的 21 亿个测序读取来演示 Rockhopper 的性能,这些实验涉及大肠杆菌、淋病奈瑟菌、沙门氏菌、化脓性链球菌和嗜线虫致病杆菌。我们发现,与大肠杆菌和淋病奈瑟菌的重点实验数据相比,我们算法生成的转录组图谱具有很高的准确性,并且我们验证了我们系统识别新的小 RNA、操纵子和转录起始位点的能力。我们的结果表明,Rockhopper 可用于高效准确地分析细菌 RNA-seq 数据,并有助于阐明细菌转录组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/3737546/84a1d85db19c/gkt444f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验