Suppr超能文献

基于 RNA-seq 数据的操纵子识别计算系统。

A computational system for identifying operons based on RNA-seq data.

机构信息

Department of Computer Science, Wellesley College, Wellesley, MA 02481, USA.

出版信息

Methods. 2020 Apr 1;176:62-70. doi: 10.1016/j.ymeth.2019.03.026. Epub 2019 Apr 4.

Abstract

An operon is a set of neighboring genes in a genome that is transcribed as a single polycistronic message. Genes that are part of the same operon often have related functional roles or participate in the same metabolic pathways. The majority of all bacterial genes are co-transcribed with one or more other genes as part of a multi-gene operon. Thus, accurate identification of operons is important in understanding co-regulation of genes and their functional relationships. Here, we present a computational system that uses RNA-seq data to determine operons throughout a genome. The system takes the name of a genome and one or more files of RNA-seq data as input. Our method combines primary genomic sequence information with expression data from the RNA-seq files in a unified probabilistic model in order to identify operons. We assess our method's ability to accurately identify operons in a range of species through comparison to external databases of operons, both experimentally confirmed and computationally predicted, and through focused experiments that confirm new operons identified by our method. Our system is freely available at https://cs.wellesley.edu/~btjaden/Rockhopper/.

摘要

操纵子是基因组中一组相邻的基因,它们作为一个单一的多顺反子信息转录。属于同一操纵子的基因通常具有相关的功能作用或参与相同的代谢途径。大多数细菌基因都与一个或多个其他基因一起作为多基因操纵子的一部分共同转录。因此,准确识别操纵子对于理解基因的协同调控及其功能关系非常重要。在这里,我们提出了一个使用 RNA-seq 数据来确定整个基因组中操纵子的计算系统。该系统以基因组的名称和一个或多个 RNA-seq 数据文件作为输入。我们的方法将主要的基因组序列信息与 RNA-seq 文件中的表达数据结合在一个统一的概率模型中,以识别操纵子。我们通过与实验证实和计算预测的操纵子外部数据库进行比较,以及通过确认我们的方法识别的新操纵子的重点实验,评估了我们的方法在一系列物种中准确识别操纵子的能力。我们的系统可在 https://cs.wellesley.edu/~btjaden/Rockhopper/ 免费获得。

相似文献

1
A computational system for identifying operons based on RNA-seq data.
Methods. 2020 Apr 1;176:62-70. doi: 10.1016/j.ymeth.2019.03.026. Epub 2019 Apr 4.
3
Genome-wide operon prediction in Staphylococcus aureus.
Nucleic Acids Res. 2004 Jul 13;32(12):3689-702. doi: 10.1093/nar/gkh694. Print 2004.
4
The distinctive signatures of promoter regions and operon junctions across prokaryotes.
Nucleic Acids Res. 2006;34(14):3980-7. doi: 10.1093/nar/gkl563. Epub 2006 Aug 12.
5
Detecting operons in bacterial genomes via visual representation learning.
Sci Rep. 2021 Jan 22;11(1):2124. doi: 10.1038/s41598-021-81169-9.
6
Detection of operons.
Proteins. 2006 Aug 15;64(3):615-28. doi: 10.1002/prot.21021.
7
Computational analysis of bacterial RNA-Seq data.
Nucleic Acids Res. 2013 Aug;41(14):e140. doi: 10.1093/nar/gkt444. Epub 2013 May 28.
8
ODB: a database of operons accumulating known operons across multiple genomes.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D358-62. doi: 10.1093/nar/gkj037.
9
Detecting uber-operons in prokaryotic genomes.
Nucleic Acids Res. 2006 May 8;34(8):2418-27. doi: 10.1093/nar/gkl294. Print 2006.
10
Transcriptome dynamics-based operon prediction in prokaryotes.
BMC Bioinformatics. 2014 May 16;15:145. doi: 10.1186/1471-2105-15-145.

引用本文的文献

2
OpDetect: A convolutional and recurrent neural network classifier for precise and sensitive operon detection from RNA-seq data.
PLoS One. 2025 Aug 1;20(8):e0329355. doi: 10.1371/journal.pone.0329355. eCollection 2025.
3
Environmental cues in different host niches shape the survival fitness of Staphylococcus aureus.
Nat Commun. 2025 Jul 28;16(1):6928. doi: 10.1038/s41467-025-62292-x.
4
DNA methylation affects gene expression but not global chromatin structure in .
J Bacteriol. 2025 Jul 14:e0054024. doi: 10.1128/jb.00540-24.
6
exhibits defensive multicellularity in response to a quorum sensing molecule.
bioRxiv. 2025 May 2:2025.05.02.651457. doi: 10.1101/2025.05.02.651457.
7
Transcriptomic profiling reveals RetS-mediated regulation of type VI secretion system and host cell responses in infections.
Front Cell Infect Microbiol. 2025 Jun 10;15:1582339. doi: 10.3389/fcimb.2025.1582339. eCollection 2025.
8
Interactions with native microbial keystone taxa enhance the biocontrol efficiency of Streptomyces.
Microbiome. 2025 May 19;13(1):126. doi: 10.1186/s40168-025-02120-y.
9
Separate, separated, and together: the transcriptional program of the syntrophy leading to interspecies cell fusion.
mSystems. 2025 May 20;10(5):e0003025. doi: 10.1128/msystems.00030-25. Epub 2025 Apr 29.
10
Regulatory roles of an sRNA derived from the 5´ UTR and sequence internal to A in PAO1.
Microbiol Spectr. 2025 Jun 3;13(6):e0130324. doi: 10.1128/spectrum.01303-24. Epub 2025 Apr 22.

本文引用的文献

3
Deep genome annotation of the opportunistic human pathogen Streptococcus pneumoniae D39.
Nucleic Acids Res. 2018 Nov 2;46(19):9971-9989. doi: 10.1093/nar/gky725.
4
Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes.
Bioinformatics. 2018 Dec 1;34(23):4118-4120. doi: 10.1093/bioinformatics/bty496.
6
RefSeq: an update on prokaryotic genome annotation and curation.
Nucleic Acids Res. 2018 Jan 4;46(D1):D851-D860. doi: 10.1093/nar/gkx1068.
7
ARSDA: A New Approach for Storing, Transmitting and Analyzing Transcriptomic Data.
G3 (Bethesda). 2017 Dec 4;7(12):3839-3848. doi: 10.1534/g3.117.300271.
9
Genome-Wide Transcriptional Start Site Mapping and sRNA Identification in the Pathogen .
Front Cell Infect Microbiol. 2017 Jan 19;7:10. doi: 10.3389/fcimb.2017.00010. eCollection 2017.
10
Computational operon prediction in whole-genomes and metagenomes.
Brief Funct Genomics. 2017 Jul 1;16(4):181-193. doi: 10.1093/bfgp/elw034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验