Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 66-153, Cambridge, Massachusetts 02139, United States.
Biomacromolecules. 2015 Dec 14;16(12):3762-73. doi: 10.1021/acs.biomac.5b01026. Epub 2015 Nov 6.
The preparation of new responsive hydrogels is crucial for the development of soft materials for various applications, including additive manufacturing and biomedical implants. Here, we report the discovery of a new mechanism for forming physical hydrogels by the arrested phase separation of a subclass of responsively hydrophobic elastin-like polypeptides (ELPs). When moderately concentrated solutions of ELPs with the pentapeptide repeat (XPAVG)n (where X is either 20% or 60% valine with the remainder isoleucine) are warmed above their inverse transition temperature, phase separation becomes arrested, and hydrogels can be formed with shear moduli on the order of 0.1-1 MPa at 20 wt % in water. The longest stress relaxation times are well beyond 10(3) s. This result is surprising because ELPs are classically known for thermoresponsive coacervation that leads to macrophase separation, and solids are typically formed in the bulk or by supplemental cross-linking strategies. This new mechanism can form gels with remarkable mechanical behavior based on simple macromolecules that can be easily engineered. Small angle scattering experiments indicate that phase separation arrests to form a network of nanoscale domains, exhibiting rheological and structural features consistent with an arrested spinodal decomposition mechanism. Gel nanostructure can be modeled as a disordered bicontinuous network with interdomain, intradomain, and curvature length scales that can be controlled by sequence design and assembly conditions. These studies introduce a new class of reversible, responsive materials based on a classic artificial biopolymer that is a versatile platform to address critical challenges in industrial and medical applications.
新响应性水凝胶的制备对于各种应用的软材料的发展至关重要,包括增材制造和生物医学植入物。在这里,我们报告了通过响应性疏水性弹性蛋白样多肽(ELP)亚类的相分离的捕获来形成物理水凝胶的新机制。当具有五肽重复(XPAVG)n 的 ELP 的中等浓度溶液(其中 X 是 20%或 60%缬氨酸,其余是异亮氨酸)被加热到其反转温度以上时,相分离被捕获,并且可以形成剪切模量为 0.1-1 MPa 的水凝胶在 20wt%的水中。最长的应力松弛时间远远超过 10³ s。这一结果令人惊讶,因为 ELP 通常以导致大相分离的热响应凝聚而闻名,而固体通常是在本体中形成的,或者通过补充交联策略形成。这种新机制可以基于简单的大分子形成具有显著机械性能的凝胶,这些大分子可以很容易地进行工程设计。小角散射实验表明,相分离被捕获以形成纳米级域的网络,表现出与相分离分解机制一致的流变学和结构特征。凝胶纳米结构可以建模为无序双连续网络,具有域间、域内和曲率长度尺度,这些尺度可以通过序列设计和组装条件来控制。这些研究引入了一类新的基于经典人工生物聚合物的可逆、响应性材料,这是一个通用平台,可以解决工业和医学应用中的关键挑战。