Sierra María J, Millán Rocio, López Félix A, Alguacil Francisco J, Cañadas Inmaculada
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, Edif. 20, 28040, Madrid, Spain.
Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avenida Gregorio del Amo 8, 28040, Madrid, Spain.
Environ Sci Pollut Res Int. 2016 Mar;23(5):4898-907. doi: 10.1007/s11356-015-5688-8. Epub 2015 Nov 7.
Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.
汞污染土壤是一个重要的环境问题,需要制定可持续且高效的去污策略。这项工作聚焦于一种修复技术的应用,该技术尽可能维持土壤的生态和环境服务功能,并探寻可持续的土地利用替代方案。在中试规模下,使用太阳能炉进行受控热脱附,应用于不同类型的土壤,确定确保这些土壤功能正常且避免汞交换至其他环境介质所需的温度。研究并评估了随着温度升高土壤汞含量的演变情况(总量、可溶性和可交换性)以及所选土壤质量指标的诱导变化。对于总汞而言,将其降低至可接受水平所需的温度取决于预期的土壤用途以及法规的严格程度。对于商业、住宅或工业用途,土壤样品应加热至高于280°C的温度,此时总汞的80%以上会被释放出来,达到既定的法定总汞水平,并避免因高有效汞浓度带来的潜在风险。相反,对于农业用途或土壤自然保护而言,维持可接受的土壤质量水平会限制加热温度,因此必须考虑额外的处理措施以降低有效汞含量。除了土壤中的总汞浓度外,在做出修复处理和潜在未来用途的最终决策时,还应考虑有效汞含量。图形摘要:利用太阳能修复受汞污染的土壤。