de Vos Marjon G J, Dawid Alexandre, Sunderlikova Vanda, Tans Sander J
Foundation for Fundamental Research on Matter Institute for Atomic and Molecular Physics (FOM Institute AMOLF), 1098 XG Amsterdam, The Netherlands; Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; Wageningen University, 6708 PB Wageningen, The Netherlands;
University of Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, F-38402 Grenoble, France; CNRS, Laboratoire Interdisciplinaire de Physique, F-38402 Grenoble, France.
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14906-11. doi: 10.1073/pnas.1510282112. Epub 2015 Nov 13.
Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve when essential mutations are only accessible through positive selection if they are fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here, we studied genetic constraints in fixed and fluctuating environments using the Escherichia coli lac operon as a model system for genotype-environment interactions. We found that, in different fixed environments, all trajectories that were reconstructed by applying point mutations within the transcription factor-operator interface became trapped at suboptima, where no additional improvements were possible. Paradoxically, repeated switching between these same environments allows unconstrained adaptation by continuous improvements. This evolutionary mode is explained by pervasive cross-environmental tradeoffs that reposition the peaks in such a way that trapped genotypes can repeatedly climb ascending slopes and hence, escape adaptive stasis. Using a Markov approach, we developed a mathematical framework to quantify the landscape-crossing rates and show that this ratchet-like adaptive mechanism is robust in a wide spectrum of fluctuating environments. Overall, this study shows that genetic constraints can be overcome by environmental change and that cross-environmental tradeoffs do not necessarily impede but also, can facilitate adaptive evolution. Because tradeoffs and environmental variability are ubiquitous in nature, we speculate this evolutionary mode to be of general relevance.
上位性相互作用会阻碍并塑造进化变化。实际上,如果必需突变只有在同时固定时才能通过正选择获得,那么表型可能无法进化。人们对环境变异性如何影响此类限制知之甚少。在这里,我们以大肠杆菌乳糖操纵子作为基因型-环境相互作用的模型系统,研究了固定环境和波动环境中的遗传限制。我们发现,在不同的固定环境中,通过在转录因子-操纵子界面内应用点突变重建的所有轨迹都被困在次优状态,在此状态下无法进一步改进。矛盾的是,在这些相同环境之间反复切换可通过持续改进实现无限制的适应。这种进化模式可以用普遍存在的跨环境权衡来解释,这些权衡以这样一种方式重新定位峰值,即被困的基因型可以反复攀爬上升的斜坡,从而逃脱适应性停滞。我们使用马尔可夫方法开发了一个数学框架来量化景观穿越率,并表明这种棘轮状的适应性机制在广泛的波动环境中是稳健的。总体而言,这项研究表明遗传限制可以通过环境变化来克服,并且跨环境权衡不一定会阻碍,反而可以促进适应性进化。由于权衡和环境变异性在自然界中无处不在,我们推测这种进化模式具有普遍相关性。