Carpenter Alexander C, Feist Adam M, Harrison Fergus S M, Paulsen Ian T, Williams Thomas C
Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia.
CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, 2601, Australia.
Metab Eng Commun. 2023 Jul 13;17:e00227. doi: 10.1016/j.mec.2023.e00227. eCollection 2023 Dec.
Adaptive Laboratory Evolution (ALE) is a powerful tool for engineering and understanding microbial physiology. ALE relies on the selection and enrichment of mutations that enable survival or faster growth under a selective condition imposed by the experimental setup. Phenotypic fitness landscapes are often underpinned by complex genotypes involving multiple genes, with combinatorial positive and negative effects on fitness. Such genotype relationships result in mutational fitness landscapes with multiple local fitness maxima and valleys. Traversing local maxima to find a global maximum often requires an individual or sub-population of cells to traverse fitness valleys. Traversing involves gaining mutations that are not adaptive for a given local maximum but are necessary to 'peak shift' to another local maximum, or eventually a global maximum. Despite these relatively well understood evolutionary principles, and the combinatorial genotypes that underlie most metabolic phenotypes, the majority of applied ALE experiments are conducted using constant selection pressures. The use of constant pressure can result in populations becoming trapped within local maxima, and often precludes the attainment of optimum phenotypes associated with global maxima. Here, we argue that oscillating selection pressures is an easily accessible mechanism for traversing fitness landscapes in ALE experiments, and provide theoretical and practical frameworks for implementation.
适应性实验室进化(ALE)是一种用于工程设计和理解微生物生理学的强大工具。ALE依赖于在实验设置施加的选择条件下,对能够实现存活或更快生长的突变进行选择和富集。表型适应度景观通常由涉及多个基因的复杂基因型支撑,这些基因对适应度具有组合的正向和负向影响。这种基因型关系导致具有多个局部适应度最大值和最小值的突变适应度景观。穿越局部最大值以找到全局最大值通常需要单个细胞或细胞亚群穿越适应度低谷。穿越涉及获得对于给定局部最大值不具有适应性但对于“峰值转移”到另一个局部最大值或最终全局最大值是必要的突变。尽管这些进化原理相对已被充分理解,并且大多数代谢表型背后存在组合基因型,但大多数应用的ALE实验是在恒定选择压力下进行的。使用恒定压力可能导致群体被困在局部最大值内,并且常常排除了获得与全局最大值相关的最佳表型的可能性。在此,我们认为振荡选择压力是ALE实验中穿越适应度景观的一种易于实现的机制,并提供了实施的理论和实践框架。