Suppr超能文献

一种基于适配体DNA生物传感器调控释放的石墨烯基生物传感平台。

A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

作者信息

Mao Yu, Chen Yongli, Li Song, Lin Shuo, Jiang Yuyang

机构信息

Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.

The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.

出版信息

Sensors (Basel). 2015 Nov 9;15(11):28244-56. doi: 10.3390/s151128244.

Abstract

A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

摘要

通过将基于适体的DNA生物传感器与氧化石墨烯(GO)集成,开发了一种新型生物传感平台,用于快速简便地检测三磷酸腺苷(ATP,作为模型靶标)。被GO锁定的DNA生物传感器被设计为包含两个传感模块,其中一个是ATP识别位点,另一个是产生Nt.BbvCI切口结构域的自我复制轨道。利用单链DNA、双链DNA和适体-靶标复合物对GO的不同结合亲和力,在与DNA生物传感器部分杂交的互补DNA链(CPDNA)的帮助下,DNA生物传感器可以在靶标存在时从GO中有效释放。然后,可以触发聚合/切口酶协同等温扩增,导致大量DNA扩增子的合成,从而实现增强的灵敏度,线性动态响应范围宽达四个数量级,且具有良好的选择性。这种生物传感策略扩展了GO-DNA纳米生物界面在生物传感中的应用,在基础研究和生物医学诊断中显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67ca/4701278/f1abcfd9b543/sensors-15-28244-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验