Dione N, Khelaifia S, La Scola B, Lagier J C, Raoult D
Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France.
Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France.
Clin Microbiol Infect. 2016 Jan;22(1):53-58. doi: 10.1016/j.cmi.2015.10.032. Epub 2015 Nov 11.
In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories.
19世纪中叶,人们引入了需氧菌和厌氧菌的二分法。然而,最近有研究表明,在含有抗氧化剂的培养基中,一些严格厌氧菌如纤细瘤胃球菌和坏死梭杆菌能够进行有氧生长。我们对来自276种细菌的623株菌株进行了有氧培养测试,其中包括82种严格厌氧菌、154种兼性厌氧菌、31种需氧菌、9种微需氧菌以及10种真菌。基础培养基以 Schaedler 琼脂为基础,添加1 g/L抗坏血酸和0.1 g/L谷胱甘肽(R培养基)。我们相继对该培养基进行优化,添加0.4 g/L尿酸、采用成分单独高压灭菌,或添加0.1 g/L血红素或2 g/Lα-酮戊二酸。在基础培养基中,237种细菌和10种真菌能够生长,但有36种细菌无法生长,其中包括22种严格厌氧菌。添加尿酸后,又有14种细菌能够生长,其中包括8种严格厌氧菌,而单独高压灭菌则使所有测试菌株均能生长。为了扩大其对苛求菌的潜在应用范围,我们针对流感嗜血杆菌、副流感嗜血杆菌和腐蚀艾肯菌添加了血红素,针对嗜肺军团菌添加了α-酮戊二酸。除结核分枝杆菌和牛分枝杆菌外,该培养基能使所有测试菌株生长。测试初代培养物和更多苛求菌将是后续的主要工作,但R培养基与快速鉴定方法(基质辅助激光解吸/电离飞行时间质谱法)相结合将有助于临床微生物实验室的厌氧菌培养。